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Outline

• Main results:
. We propose the coding divergence, a novel measure of

the similarity between two sets of continuous data
– Measure the complexity of separating the two sets

. We constructed the lazy learner, and showed the com-
petitive performance in classification by experiments
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Outline

• Main results:
. We propose the coding divergence, a novel measure of

the similarity between two sets of continuous data
– Measure the complexity of separating the two sets

. We constructed the lazy learner, and showed the com-
petitive performance in classification by experiments

• Key processes:
. Embed continuous data in the Euclidean space ℝd into

the Cantor space Σω topologically (discretization)
. Learn the simplest model (open set) in Σω

. Count the length of the code encoding the model
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Examples of the Coding Divergence
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Contribution to Experimental Science

• In experimental science, controlled experiments are the
standard method to test hypotheses
– Example: Compare two groups, one of which receives
a placebo (control) and the other receives a new drug
(treatment), to test the effect of the drug

• Statistical hypothesis testing (e.g., t-test) is a typical
method, but has many problems [Johnson, ]
– Non-verifiable assumptions and arbitrary p values
• We can treat in theMachine Learning context, since all we
have to do is comparing two classes
• The coding divergence can achieve this task
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Motivation
Continuous data (reals)
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Discretization Using the Cantor Space
• TheCantor topology τΣω ≔ {WΣω ∣ W ⊆ Σ∗ }, and the topo-
logical space (Σω, τΣω ) is called the Cantor space
– The Cantor space is the standard topological space induced
on the set of infinite sequences Σω

∘ wΣω = { p ∈ Σω ∣ w ⊑ p }
∘ WΣω = { p ∈ Σω ∣ ∃w ∈ W (w ⊑ p) }

– The set {wΣω ∣ w ∈ Σ∗ } becomes a base of the space
– If P ⊆ Σω is open, then P is finitely observable

∘ A discretized datum is a base of an open set

• An embedding γ :⊆ ℝd → Σω from the d-dimensional Eu-
clidean space ℝd into the Cantor space corresponds to a
discretization process of continuous (real-valued) data
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Example: The Binary Embedding γ
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Tree representation of the Binary
Embedding γ
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Tree representation of the Binary
Embedding γ
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The Coding Divergence

• For non-empty finite sets X, Y ⊂ ℐ (ℐ is the unit interval),
define the coding divergence w.r.t. γ by

Cγ(X, Y) ≔ {∞ if X ∩ Y ≠ ∅,
Dγ(X; Y) + Dγ(Y; X) otherwise,

– Dγ is the directed coding divergence:

Dγ(X; Y) ≔ ‖X‖−1min{ |O| ∣O is open, and
consistent with (γ(X), γ(Y)) }

∘ ‖X‖ is the number of elements in X
∘ |O| ≔ ∑w∈W |w|, where O = WΣω

∘ O is consistent ⟺ O ⊇ γ(X) and O ∩ γ(Y) = ∅
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The Coding Divergence (cont.)

• For non-empty finite sets X, Y ⊂ ℐ (ℐ is the unit interval),
define the coding divergence w.r.t. γ by

Cγ(X, Y) ≔ {∞ if X ∩ Y ≠ ∅,
Dγ(X; Y) + Dγ(Y; X) otherwise,

• The coding divergence depends on only the topological
structure of the Cantor space
– Machine Learning and Data Mining without probabilis-
tic distributions can be realized
∘ Different from statistical approachs
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The Learning AlgorithmM

function MAIN(X, Y, kmax)
(H1,H2) ← LEARNING(X, Y, ∅, ∅, 0, kmax)
return 1

‖X‖ ∑v∈H1 |v| +
1

‖Y‖ ∑w∈H2 |w|

function LEARNING(X, Y, H1, H2, k, kmax)
V ← OBSERVE(X, k), W ← OBSERVE(Y, k)
H1 ← H1 ∪ { v ∈ V ∣ v ∉ W }, H2 ← H2 ∪ {w ∈ W ∣ w ∉ V }
X ← { x ∈ X ∣ x ∉ ρ(H1Σω) }, Y ← { y ∈ Y ∣ y ∉ ρ(H2Σω) }
if X = ∅ and Y = ∅ then return (H1,H2)
else if k = kmax then return (H1 ∪ V,H2 ∪ W)
else return LEARNING(X, Y, H1, H2, k + 1, kmax)

function OBSERVE(X, k)
return { γ(x)[n] ∣ x ∈ X }（n = (k + 1)d − 1）

/



Learning of the Coding Divergence

Level-1
0 1
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C2(X, Y) =

: Y
: X

/



Learning of the Coding Divergence

Level-1
0 1

D2(X; Y) → {11, 011, 100}
D2(Y; X) → {00, 010, 101}

C2(X, Y) =

: Y
: X

/



Learning of the Coding Divergence

Level-1
0 1

Level-2
0 1

D2(X; Y) → {11, 011, 100}
D2(Y; X) → {00, 010, 101}

C2(X, Y) =

: Y
: X

/



Learning of the Coding Divergence

Level-1
0 1

Level-2
0 1

D2(X; Y) → {11, 011, 100}
D2(Y; X) → {00, 010, 101}

C2(X, Y) =

: Y
: X

/



Learning of the Coding Divergence

Level-1
0 1

Level-2
0 1

D2(X; Y) → {11, 011, 100}
D2(Y; X) → {00, 010, 101}

C2(X, Y) =

: Y
: X

/



Learning of the Coding Divergence

Level-1
0 1

Level-2
0 1

Level-3
00 01 10 11

D2(X; Y) → {11, 011, 100}
D2(Y; X) → {00, 010, 101}

C2(X, Y) =

: Y
: X

/



Learning of the Coding Divergence

Level-1
0 1

Level-2
0 1

Level-3
00 01 10 11

D2(X; Y) → {11, 011, 100}
D2(Y; X) → {00, 010, 101}

C2(X, Y) =

: Y
: X

/



Learning of the Coding Divergence

Level-1
0 1

Level-2
0 1

Level-3
00 01 10 11

000 011 100 111001 010 101 110
Level-4

D2(X; Y) → {11, 011, 100}
D2(Y; X) → {00, 010, 101}

C2(X, Y) =

: Y
: X

/



Learning of the Coding Divergence

Level-1
0 1

Level-2
0 1

Level-3
00 01 10 11

000 011 100 111001 010 101 110
Level-4

D2(X; Y) → {11, 011, 100}
D2(Y; X) → {00, 010, 101}

C2(X, Y) =

: Y
: X

/



Learning of the Coding Divergence

Level-1
0 1

Level-2
0 1

Level-3
00 01 10 11

000 011 100 111001 010 101 110
Level-4

D2(X; Y) → {11, 011, 100}
D2(Y; X) → {00, 010, 101}

C2(X, Y) = 8/5 + 8/5 = 3.2

: Y
: X

/



Learning of the Coding Divergence

Level-1
0 1
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0 1
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Level-4

D2(X; Y) → {11, 011, 100}
D2(Y; X) → {00, 010, 101}

C2(X, Y) = 8/5 + 8/5 = 3.2

: Y
: X

The computational complexity:
O(mn) (m = ‖X‖, n = ‖Y‖)
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Classification with the Coding Div.

• Build a lazy learner using the coding divergence
• It receives training data X in class A and Y in class B, and
classifies test data Z to A or B
– Assumption: All labels in Z are same
• Use the learning algorithmM

Z is in { A ifM(X, Z, kmax) > M(Y, Z, kmax),
B otherwise.

X
Y

Z
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Classification with the Coding Div.

• Build a lazy learner using the coding divergence
• It receives training data X in class A and Y in class B, and
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– Assumption: All labels in Z are same
• Use the learning algorithmM

Z is in { A ifM(X, Z, kmax) > M(Y, Z, kmax),
B otherwise.
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Experimental Methods

• Implemented in R language ..
• Used UCI data sets (abalon, sonar, ...)
• Repeated the following procedure , times, and ob-
tain accuracy from sensitivity and specificity
– Choose attributes randomly
– Sample n data twice from each class (X, T+ and Y, T−)

∘ X and Y are training data, T+ and T− are test data
– Normalize data (min-max normalization)
– Classify T+ and T− by our lazy learner and other methods

• Obtained accuracy by (tpos + tneg)/20000, where tpos and
tneg are the number of true positive and true negative,
resp.

/



Experimental Results

0.5

0.4

0.45

0.55
A

cc
ur

ac
y

0.8
0.7
0.6
0.5

(1, 10) (2, 10) (3, 10) (1, 30) (2, 30) (3, 30)
(Number of attributes, Size of each data set)

abalon

sonar

CD SVM (RBF) SVM (pory)
1NN 5NN

A
cc

ur
ac

y

/



Experimental Results

(1, 10) (2, 10) (3, 10) (1, 30) (2, 30) (3, 30)
(Number of attributes, Size of each data set)

CD SVM (RBF) SVM (pory)
1NN 5NN

0.8

0.9

1.0
A

cc
ur

ac
y

segmentation
A

cc
ur

ac
y

0.4

0.5

0.45

madelon

/



Experimental Results

(1, 10) (2, 10) (3, 10) (1, 30) (2, 30) (3, 30)
(Number of attributes, Size of each data set)

CD SVM (RBF) SVM (pory)
1NN 5NN

0.6
0.7
0.8
0.9

A
cc

ur
ac

y
waveform

0.5

0.8
0.7
0.6

transfusion

A
cc

ur
ac

y

/



Experimental Results

(1, 10) (2, 10) (3, 10) (1, 30) (2, 30) (3, 30)
(Number of attributes, Size of each data set)

CD SVM (RBF) SVM (pory)
1NN 5NN

A
cc

ur
ac

y
A

cc
ur

ac
y

1.0

0.7

0.9

0.8

glass

1.0

0.8

0.6

iono
sphere

/



Experimental Results
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Conclusion

• We proposed the coding divergence to measure the simi-
larity between sets of continuous data
– Embed continuous data in ℝd into the Cantor space Σω

(discretization process)
– Learn the simplest, consistentmodel (an open set in Σω)
– Measure the similarity by the length of the code encod-
ing the model

• We constructed a lazy learner for classification
– This showed competitive performance compared to
SVM and the k-nearest neighbor method
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RelatedWorks

• Liu et al. constructed decision trees by partitioning inter-
vals, and detected anomalies by measuring the height of
the trees [Liu et al. ]
– Ourworks formulated this “partition”mathematically as
embedding into the Cantor space

• Kernel methods (e.g., SVM) measure similarity of graphs
and strings by mapping them to ℝd or ℝ∞

– Our strategy is inverted
∘ Map ℝd to the space of sequences Σω

– Natural to treat feature space in a discrete manner
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An Fatal Error Caused by Discretization

• Solve the system of linear equations [Schroder, ]
40157959.0 x + 67108865.0 y = 1

67108864.5 x + 112147127.0 y = 0
– Obtained by the well-known formula

x =
b1a22 − b2a12
a11a22 − a21a12

, y =
b2a11 − b1a21
a11a22 − a21a12

• By floating point arithmetic with double precision vari-
ables (IEEE ) :
x = 112147127, y = −67108864.5

• The correct solution:
x = 224294254, y = −134217729

A-/A-
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