ACML 2010 November 9, 2010

The Coding Divergence for Measuring the Complexity of Separating Two Sets

Mahito SUGIYAMA^{†,‡}, Akihiro YAMAMOTO[†] [†]Kyoto University [‡]JSPS Research Fellow

Outline

Main results:

- 1. We propose the coding divergence, a novel measure of the similarity between two sets of continuous data
 - Measure the complexity of separating the two sets
- 2. We constructed the lazy learner, and showed the competitive performance in classification by experiments

Outline

Main results:

- 1. We propose the coding divergence, a novel measure of the similarity between two sets of continuous data
 - Measure the complexity of separating the two sets
- 2. We constructed the lazy learner, and showed the competitive performance in classification by experiments

• Key processes:

- 1. Embed continuous data in the Euclidean space \mathbb{R}^d into the Cantor space Σ^{ω} topologically (discretization)
- **2.** Learn the simplest model (open set) in Σ^{ω}
- 3. Count the length of the code encoding the model

Binary-coding of real numbers in [0, 1]

Contribution to Experimental Science

- In experimental science, controlled experiments are the standard method to test hypotheses
 - Example: Compare two groups, one of which receives a placebo (control) and the other receives a new drug (treatment), to test the effect of the drug
- Statistical hypothesis testing (e.g., t-test) is a typical method, but has many problems [Johnson, 99]
 - Non-verifiable assumptions and arbitrary p values
- We can treat in the Machine Learning context, since all we have to do is comparing two classes
- The coding divergence can achieve this task

Motivation

Continuous data (reals)

Encoded by infinite sequences

Motivation

Continuous data (reals)

	att. A	att. B	
1	1.239582	0.6469	
2	0.426711	0.2655	
3	1.1115 77	<mark>0.4</mark> 998	
4	1.801501	0.7569	

Encoded by infinite sequences

Continuous data (reals)			Discrete data (rationals)		
	att. A	att. B	att. A	att. B	
1	1.239582	0.6469	1.2	0.6	
2	0.426711	0.2655	> 0.4	0.2	
3	1.1115 77	0.4998	1.1	0.4	
4	1.801501	0.7569	1.8	0.7	
Encoded by infinite sequences		Discretizat Stored in data	Discretization Keep only fini Discretization prefix		

Motivation

Continuous data (reals)			Discrete data (rationals)		
	att. A	att. B	att. A	att. B	
1	1.239582	0.6469	1.2	0.6	
2 3	0.4 Data assum theoretical	ned 2655 ly v. 4998	Data u learni	used for ng	
4	1.801501	0.7569	1.8	0.7	
Encoded by infinite sequences		Discretization Stored in datak	on Keep bases	Keep only finite prefixes	

Discretization Using the Cantor Space

- The Cantor topology $\tau_{\Sigma^{\omega}} := \{ W\Sigma^{\omega} \mid W \subseteq \Sigma^* \}$, and the topological space $(\Sigma^{\omega}, \tau_{\Sigma^{\omega}})$ is called the Cantor space
 - The Cantor space is the standard topological space induced on the set of infinite sequences Σ^{ω}
 - $w\Sigma^{\omega} = \{ p \in \Sigma^{\omega} \mid w \sqsubseteq p \}$
 - $W\Sigma^{\omega} = \{ p \in \Sigma^{\omega} \mid \exists w \in W (w \sqsubseteq p) \}$
 - The set { $w\Sigma^{\omega} \mid w \in \Sigma^*$ } becomes a base of the space
 - If $P \subseteq \Sigma^{\omega}$ is open, then *P* is finitely observable
 - A discretized datum is a base of an open set
- An embedding $\gamma :\subseteq \mathbb{R}^d \to \Sigma^{\omega}$ from the *d*-dimensional Euclidean space \mathbb{R}^d into the Cantor space corresponds to a discretization process of continuous (real-valued) data

Example: The Binary Embedding γ_2

Tree representation of the Binary Embedding γ_2

Tree representation of the Binary Embedding γ_2

The Coding Divergence

 For non-empty finite sets X, Y ⊂ 𝒴 (𝒴 is the unit interval), define the coding divergence w.r.t. γ by

$$C_{\gamma}(X,Y) := \begin{cases} \infty & \text{if } X \cap Y \neq \emptyset, \\ D_{\gamma}(X;Y) + D_{\gamma}(Y;X) & \text{otherwise,} \end{cases}$$

- D_{γ} is the directed coding divergence:

$$D_{\gamma}(X; Y) := ||X||^{-1} \min\{|O| | O \text{ is open, and} \\ \text{consistent with } (\gamma(X), \gamma(Y)) \}$$

- ||X|| is the number of elements in X
- $|O| := \sum_{w \in W} |w|$, where $O = W \Sigma^{\omega}$
- *O* is consistent $\iff O \supseteq \gamma(X)$ and $O \cap \gamma(Y) = \emptyset$

The Coding Divergence (cont.)

 For non-empty finite sets X, Y ⊂ 𝒮 (𝒮 is the unit interval), define the coding divergence w.r.t. γ by

$$C_{\gamma}(X,Y) := \begin{cases} \infty & \text{if } X \cap Y \neq \emptyset, \\ D_{\gamma}(X;Y) + D_{\gamma}(Y;X) & \text{otherwise,} \end{cases}$$

- The coding divergence depends on only the topological structure of the Cantor space
 - Machine Learning and Data Mining without probabilistic distributions can be realized
 - Different from statistical approachs

The Learning Algorithm M

function MAIN(X, Y, k_{max}) $(H_1, H_2) \leftarrow \text{Learning}(X, Y, \emptyset, \emptyset, 0, k_{\text{max}})$ return $\frac{1}{\|X\|} \sum_{v \in H_1} |v| + \frac{1}{\|Y\|} \sum_{w \in H_2} |w|$ function Learning(X, Y, H_1 , H_2 , k, k_{max}) $V \leftarrow OBSERVE(X, k), \quad W \leftarrow OBSERVE(Y, k)$ $H_1 \leftarrow H_1 \cup \{v \in V \mid v \notin W\}, \quad H_2 \leftarrow H_2 \cup \{w \in W \mid w \notin V\}$ $X \leftarrow \{x \in X \mid x \notin \rho(H_1 \Sigma^{\omega})\}, Y \leftarrow \{y \in Y \mid y \notin \rho(H_2 \Sigma^{\omega})\}$ if $X = \emptyset$ and $Y = \emptyset$ then return (H_1, H_2) else if $k = k_{max}$ then return $(H_1 \cup V, H_2 \cup W)$ else return Learning(X, Y, H_1 , H_2 , k + 1, k_{max})

function Observe(X, k) return { $\gamma(x)[n] \mid x \in X$ } (n = (k + 1)d - 1)

Level-1

$$O$$
 $D_2(X; Y) \rightarrow \{$
 $D_2(Y; X) \rightarrow \{$
 $\}$
 $C_2(X, Y) =$
 $D_2(Y; X) \rightarrow \{$
 $\}$

Classification with the Coding Div.

- Build a lazy learner using the coding divergence
- It receives training data X in class A and Y in class B, and classifies test data Z to A or B
 - Assumption: All labels in Z are same
- Use the learning algorithm **M**

 $Z \text{ is in } \begin{cases} A & \text{if } \mathbf{M}(X, Z, k_{\max}) > \mathbf{M}(Y, Z, k_{\max}), \\ B & \text{otherwise.} \end{cases}$

$$X_{0}^{0} O_{0}^{0} O_{0$$

Classification with the Coding Div.

- Build a lazy learner using the coding divergence
- It receives training data X in class A and Y in class B, and classifies test data Z to A or B
 - Assumption: All labels in Z are same
- Use the learning algorithm **M**

 $Z \text{ is in } \begin{cases} A & \text{if } \mathbf{M}(X, Z, k_{\max}) > \mathbf{M}(Y, Z, k_{\max}), \\ B & \text{otherwise.} \end{cases}$

Classification with the Coding Div.

- Build a lazy learner using the coding divergence
- It receives training data X in class A and Y in class B, and classifies test data Z to A or B
 - Assumption: All labels in Z are same
- Use the learning algorithm **M**

 $Z \text{ is in } \begin{cases} A & \text{if } \mathbf{M}(X, Z, k_{\max}) > \mathbf{M}(Y, Z, k_{\max}), \\ B & \text{otherwise.} \end{cases}$

Experimental Methods

- Implemented in R language 2.10.1
- Used UCI data sets (abalon, sonar, ...)
- Repeated the following procedure 10,000 times, and obtain accuracy from sensitivity and specificity
 - Choose attributes randomly
 - Sample *n* data twice from each class (X, T_+ and Y, T_-)
 - X and Y are training data, T_+ and T_- are test data
 - Normalize data (min-max normalization)
 - Classify T_+ and T_- by our lazy learner and other methods
- Obtained accuracy by $(t_{pos} + t_{neg})/20000$, where t_{pos} and t_{neg} are the number of true positive and true negative, resp.

Conclusion

- We proposed the coding divergence to measure the similarity between sets of continuous data
 - Embed continuous data in \mathbb{R}^d into the Cantor space Σ^{ω} (discretization process)
 - Learn the simplest, consistent model (an open set in Σ^{ω})
 - Measure the similarity by the length of the code encoding the model
- We constructed a lazy learner for classification
 - This showed competitive performance compared to SVM and the k-nearest neighbor method

Appendix

Related Works

- Liu *et al.* constructed decision trees by partitioning intervals, and detected anomalies by measuring the height of the trees [Liu et al. 08]
 - Our works formulated this "partition" mathematically as embedding into the Cantor space
- Kernel methods (*e.g.*, SVM) measure similarity of graphs and strings by mapping them to \mathbb{R}^d or \mathbb{R}^∞
 - Our strategy is inverted
 - Map \mathbb{R}^d to the space of sequences Σ^{ω}
 - Natural to treat feature space in a discrete manner

An Fatal Error Caused by Discretization

- Solve the system of linear equations [Schroder, o3]
 40157959.0 x + 67108865.0 y = 1
 67108864.5 x + 112147127.0 y = 0
 - Obtained by the well-known formula

$$x = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{21} a_{12}}, \quad y = \frac{b_2 a_{11} - b_1 a_{21}}{a_{11} a_{22} - a_{21} a_{12}}$$

 By floating point arithmetic with double precision variables (IEEE 754):

x = 112147127, *y* = -67108864.5

• The correct solution:

x = 224294254, *y* = -134217729