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Goal and Approach

• Constructing a computational learning model for analog
data with discretization
. Gold-style learning model as a base model
. Computable Analysis to give theoretical support for dis-

cretizing process of analog data
. Fractals to represent (and compute) continuous objects
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Goal and Approach

• Constructing a computational learning model for analog
data with discretization
. Gold-style learning model as a base model
. Computable Analysis to give theoretical support for dis-

cretizing process of analog data
. Fractals to represent (and compute) continuous objects

Targets: Figures (non-empty compact sets in ℝn)

Hypotheses: Codes (Programs)
 − representing fractals

Evaluation of hypotheses:
Hausdorff metric (generalization errors)

Examples for learning: Rational closed intervals
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Main Results

. We formulated learning of figures with self-similar sets
(fractals) using the Gold-style learning model
• Collage Theorem gives justification for self-similar sets

. We analyzed the hierarchy of learnabilities (next slide)
. We revealed the mathematical connection between Frac-

tal Geometry and Computational Learning
• The complexity of learning (sample size) is measured by

using the Hausdorff dimension and the VC dimension
– The Hausdorff dimension and the VC dimension are

key concepts of Fractal Geometry and the Valiant-
style learning model, respectively
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Precise Result of the Hierarchy

FIGEX-INF = FIGCONS-INF = FIGRELEX-INF

FIGEFEX-INF

FIGREFEX-INF

FIGEX-TXT = FIGCONS-TXT

= FIGEXε-INF = FIGEXε-TXT

FIGRELEX-TXT

FIGREFEX-TXT

FIGEFEX-TXT = ∅

CR1

CR2
⇔ CR2 ⊊ CR1
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• Background
• Methods for learning figures
• Learnabilities under various learning criteria
• Characterization with dimH and dimVC

• Conclusion
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Discretization and Learning
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Analog data (reals)
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An Fatal Error Caused by Discretization

• Solve the system of linear equations [Schroder, ]
40157959.0 x + 67108865.0 y = 1

67108864.5 x + 112147127.0 y = 0
– Obtained by the well-known formula

x =
b1a22 − b2a12

a11a22 − a21a12
, y =

b2a11 − b1a21

a11a22 − a21a12

• By floating point arithmetic with double precision vari-
ables (IEEE ) :
x = 112147127, y = −67108864.5

• The correct solution:
x = 224294254, y = −134217729
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Our Strategy

• Use effective computing in Computable Analysis to treat
discretization precess appropriately
– While a computer reads more and more precise infor-

mation of the input, it produces more and more accu-
rate approximations of the result

• Construct an effective learning with the Gold-style learn-
ing model
– While a learner reads more and more precise examples

of the target, it produces more and more accurate hy-
potheses of the target
∘ This accuracy corresponds to a generalization error
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Treat Data as Intervals

att. A att. B

Continuous objects (reals)
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Goal: Learning the relation between attributes A and B
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Leaning from Geometrical View

1 2

1

0

Discretized data are intervals in ℝn

 - 

A learner learns a �gure that intersects with 
all intervals

・

・

The width of an interval means 
an error of the datum

att. A att. B

1.2~1.6 0.6~0.8

0.4~0.8 0.2~0.4

1.1~1.2 0.4~0.5

1.8~1.9 0.7~0.8

Digital data (rationals)
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Summary of Learning Process

Learner

Target
�gure

Positive examples: Rational closed inter-
vals intersecting the learning target
Negative examples: Rational closed inter-
vals disjoint with the learning target
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Summary of Learning Process

Learner

Positive example

Target
�gure

Negative
example

Reads a presentation 
(infinite sequence of 
examples), and pro-
duces hypotheses

Hypotheses :  Codes 
that represent self-
similar sets (self-similar 
programs)

Positive examples: Rational closed inter-
vals intersecting the learning target
Negative examples: Rational closed inter-
vals disjoint with the learning target
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represented by 
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Generalization Errors

• We measure “goodness” of a hypothesis by a generaliza-
tion error
– Weuse the Hausdorffmetric (distance between figures)

• The Hausdorff distance between figures A and B (denoted
by dH(A, B)) is the minimum ε satisfying A ⊂ Bε and B ⊂ Aε

A
B

Aε: ε-neiborhood of A

Bε: ε-neiborhood of B

/



Hypotheses Represent Self-Similar Sets

• We use logic programs to represent self-similar sets

φ1        = ½

φ2        = ½       +

φ3        = ½       +

Path(λ)
Path(0x) ← Path(x)
Path(1x) ← Path(x)
Path(3x) ← Path(x) 

Sierpiński triangle

• Any figure can be approximated by some self-similar set
(Corollary of Collage Theorem) [Falconer, ]
– For all figure K and δ > 0, there exists a self-similar set V

such that dH(K,V) < δ

/



Outline

• Background
• Methods for learning figures
• Learnabilities under various learning criteria
• Characterization with dimH and dimVC

• Conclusion

/



Learning Self-Similar Sets in the Limit

• We formulate learning of self-similar sets based on the
Gold-style learning model
– A target is always represented by some program

• A learner FIGEX-INF-learns (FIGEX-TXT-learns) a set of figures
ℱ ⊆ 𝒦∗ ⟺ For all K ∈ ℱ and informants (texts), its
output converges to a hypothesis P, where GE(K, P) = 0
– 𝒦∗: The set of figures, GE(K, P) ≔ dH(K, κ(P))

∘ κ(P) denotes the set represented by a program P
– Notation: ℱ is CR-learnable ⟺ ℱ ∈ CR

• We also consider consistent learning (FIGCONS-INF- and
FIGCONS-TXT-learning), where every hypothesis is consis-
tent with received examples so far

/



The Hierarchy of Learnabilities

FIGEX-INF = FIGCONS-INF = FIGRELEX-INF
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Approach to All Figures

• In FIGEX-learning, the space ℱ for learning (concept space)
is given (a priori)
– When a target figure K ∉ ℱ, nothing is guaranteed

• Here we give some guarantee to such cases
– We treat not only self-similar sets, but also figures
– The similar model has been studied in learning of lan-

guages [Mukouchi and Arikawa, ]

. Refutable learning: a learner stops (if a target K ∉ ℱ)
. Reliable learning: hypotheses do not converge (if K ∉ ℱ)
. Effective learning: generalization errors converge to zero
. Learning with generalization error bounds: hypotheses

converge under the error bounds
/



The Hierarchy of Learnabilities
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Conclusion So Far

• Learning of figures was realized in computational manner
using the Gold-style learning model
– Discretizationprocesswas treatedbyusing the effective

computing model in Computable Analysis
– Generalization error of a hypothesis was measured by

the Hausdorff metric
• Learnabilities of figures were analyzed under existing and

new learning criteria

/



Conclusion So Far

• Learning of figures was realized in computational manner
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The Hausdorff Dimension (dimH)

• The Hausdorff dimension is a central concept of fractals
– This indicates how much space a sets occupies near to

each of its points
– Defined by the Hausdorff measure

• Extension of usual (topological) dimension

= 0

= 1

= 2

= 3

= log3 / log2
= 1.584...

Point

Line

Plane

Cube

Sierpiński triangle
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The Hausdorff Dimension (dimH)

• The Hausdorff dimension is a central concept of fractals
– This indicates how much space a sets occupies near to

each of its points
– Defined by the Hausdorff measure

• Hausdorff measures generalize ideas of length, area, …
– Defined by using “covering” of a set

• s-dimensional Hausdorff measure of K ≔ limε→0 ℋs
ε(K)

– Countable set U is a ε-cover of K ⟺
∀U ∈ U. |U| ⩽ ε, and X ⊂ ⋃U∈U U

– ℋs
ε(K)

= inf{ ∑U∈U |U|s ∣ U is a ε-cover of K }

∞

dimHK
s

n
0

/



Characterization with dimH

• General case:
If level k is large enough, for every target figure K and for
any s < dimHK, the figure K can be covered by N intervals,
where N ⩾ bks

• Special case:
Moreover, if a target figure K is represented by some self-
similar program P, then K can be covered by N intervals,
where N ⩾ bkdimHK

– We use base-b partition in both cases

/



Characterization with dimH

• Example:
– K: The Sierpiński triangle

(dimHK = 1.584… )
– N(K):  of level-k positive examples

• With -dimensional base- partition
– Level : 3 ⩽ N(K) (2dimHK = 3)
– Level : 9 ⩽ N(K) (4dimHK = 9)

• With -dimensional base- partition
– Level : 6 ⩽ N(K) (3dimHK = 5.70… )

/



The VC Dimension (dimVC)

• The VCdimension is a parameter of separability (complex-
ity) of a class
– How many points can be separated?
– In the Valiant-style (PAC) learning model, the sample

size is characterized by the VC dimension

I: The class of open intervals
 in the real line ℝ

dimVC I = 2

H: The class of half spaces in
2-dimensional real-space ℝ2

dimVC H = 3

/



Characterization with dimH and dimVC

• The VC dimension of the set of level k programs 𝒫k is
equal to the cardinality of the number of level k intervals
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Conclusion

• Learning of figures was realized in computational manner
using the Gold-style learning model
– Discretizationprocesswas treatedbyusing the effective

computing model in Computable Analysis
– Generalization error of a hypothesis was measured by

the Hausdorff metric
• Learnabilities of figures were analyzed under existing and

new learning criteria
• A novel mathematical connection between Fractal Ge-

ometry and Computational Learning was shown using
the Hausdorff dimension and the VC dimension
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Background

• Machine learning from analog data
– The discrete Fourier analysis is a typical method

∘ But only the direction of the time axis is discretized
– We discretized all axes and give a fully computational

learning model
• What kind of representation system is appropriate?
– Recursive algorithms are key to bridge continuous and

discrete
∘ FFT is used in the discrete Fourier analysis

– Fractals are geometric concepts of recursiveness
∘ They are recursive algorithms to generate fractals

• Formulate “Learning figures by fractals”

/



Computational and Statistical Learning

Statistical learning

Targets Continuous
(real-valued functions)

Evaluation Generalization error
(KL divergence)

Representations
(Hypotheses)

Signal-level
(multilayer perceptrons)

Discrete
(languages)

Computational learning

Symbol-level
(algorithms)

great success in
Knowledge Discovery

analyzed in detail started from
the Gold-style learning model

Generalization error
(Characteristic func.)
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Targets Continuous
(real-valued functions)

Evaluation Generalization error
(KL divergence)

Representations
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(multilayer perceptrons)

Discrete
(languages)

Computational learning

Symbol-level
(algorithms)

great success in
Knowledge Discovery

analyzed in detail started from
the Gold-style learning model

Generalization error
(Characteristic func.)

introduce geometric
concept

Continuous
(Figures)

Symbol-level
(Self-similar sets)

Generalization error
(Hausdor� metric)
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Self-Similar Sets

• Self-similar sets are in a class of fractals
– defined as a fixed point of a finite set of contractions

• φ: X → X is a contraction ⟺ d(φ(x),φ(y)) ≤ cd(x, y)
(0 < c < 1, d is a metric on X)

φ1        = ½

φ2        = ½       +

φ3        = ½       +

Φ(K ) =  φ (K )
i =1

3

Φ0(K) = K Φ1(K) = Φ(K) Φ2(K) = Φ(Φ(K))

Fix(Φ) =  Φ  (K )
k = 0

k

(Sierpiński triangle)

/



Self-Similar Programs

• Represent Φ as a logic program (self-similar program)
SP(W) = {Path(λ)} ∪ {Path(wx) ← Path(x) ∣ w ∈ W}

• Bottom-up construction of the least Herbrand model of
SP(W) corresponds to computing Fix(Φ) effectively

• Example:

SP({0,1,3}) = { Path(λ), Path(0x) ← Path(x),
Path(1x) ← Path(x), Path(3x) ← Path(x) }

– Bottom-up construction:
{Path(λ)}, {Path(0), Path(1), Path(3)},

{ Path(00), Path(01), Path(03), Path(10), Path(11)Path(13), Path(30), Path(31), Path(33) },…
/



Collage Theorem

• Hausdorff distance between a figure K and a self-similar
set V can be bounded (Collage Theorem) [Barnsley, ]

dH(K,V) ⩽
dH(K,⋃φ∈C φ(K))

1 − c
(V is a self-similar set for C, c is a contractivity factor of C)

• Any figure can be approximated (in the meaning of the
Hausdorff metric) by some self-similar set arbitrarily
closely [Falconer, ]� �

For any figure K and δ > 0, there exists a self-similar
set V satisfying dH(K,V) < δ� �

/



Learning in the Limit

• Introduce a criterion corresponding to EX-learning
• A learner M FIGEX-INF-learns (FIGEX-TXT-learns) a set of fig-

ures ℱ ⊆ 𝒦∗ ⟺ For all K ∈ ℱ and informants (texts) of
K,M(σK) converges to a hypothesis P such thatGE(K, P) = 0
– GE(K, P) is a generalization error，define by dH(K, κ(P))

∘ dH is the Hausdorff distance
– Hypotheses converge ⟺ every hypothesis is same

from some point

• ℱ is CR-learnable if some learnerMCR-learns ℱ ⊆ 𝒦∗

– CR denotes the class of CR-learnable sets of figures
∘ ℱ is CR-learnable ⟺ ℱ ∈ CR

/



Analysis of Learnability in the Limit

• The set κ(𝒫∗) is FIGEX-INF-learnable (𝒦∗ is not FIGEX-INF-
learnable)
– κ(𝒫∗) is recursively enumerable
– For all P ∈ 𝒫∗ and w, whether ρ(w) ∈ 𝒬(κ(P)) can be

decidable in finite time
– Use the strategy of “generate and test”

• The set κ(𝒫∗) is not FIGEX-TXT-learnable
• The set κ(𝒫N) (N is finite set of natural numbers) is
FIGEX-TXT-learnable
– If a learner knows the number of contractions a priori, it

can learn from texts

/



The Hierarchy of Learnabilities

FIGEX-INF = FIGCONS-INF = FIGRELEX-INF

FIGEFEX-INF

FIGREFEX-INF

FIGEX-TXT = FIGCONS-TXT

= FIGEXε-INF = FIGEXε-TXT

FIGRELEX-TXT

FIGREFEX-TXT

FIGEFEX-TXT = ∅

CR1

CR2
⇔ CR2 ⊊ CR1
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Consistent Learning

• A learnerM FIGCONS-INF-learns (FIGCONS-TXT-learns) a set of
figures ℱ ⊆ 𝒦∗ ⟺ M FIGEX-INF-learns (FIGEX-TXT-learns)
ℱ, and every hypothesis is consistentwith received exam-
ples so far
– ℱ is FIGCONS-INF-learnable ⇒ ℱ is FIGEX-INF-learnable
– ℱ is FIGCONS-TXT-learnable ⇒ ℱ is FIGEX-TXT-learnable

• FIGEX-INF = FIGCONS-INF
– If ℱ ∈ FIGEX-INF,M always outputs a consistent hypoth-

esis
• FIGEX-TXT = FIGCONS-TXT
– If ℱ ∈ FIGEX-TXT,M always outputs a consistent hypoth-

esis

/



The Hierarchy of Learnabilities

FIGEX-INF = FIGCONS-INF = FIGRELEX-INF

FIGEFEX-INF

FIGREFEX-INF

FIGEX-TXT = FIGCONS-TXT

= FIGEXε-INF = FIGEXε-TXT

FIGRELEX-TXT

FIGREFEX-TXT

FIGEFEX-TXT = ∅

CR1

CR2
⇔ CR2 ⊊ CR1
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Extension of Learning in the Limit

• In FIGEX-INF- (and FIGEX-TXT-) learning, ℱ is given as a con-
cept space a priori
– When a target figure K ∉ ℱ, nothing is guaranteed

• Here we give some guarantee to such cases, where a tar-
get figure K ∉ ℱ
– More difficult than FIGEX-INF- and FIGEX-TXT-learning

• We consider the following criteria: ) refutable learning,
) reliable learning, ) effective learning, and ) learning
with generalization error bounds
– If a target K ∉ ℱ, ) a learner stops, ) hypotheses do

not converge, ) generalization errors converge to zero,
and ) converges under the error bounds

/



Reliable Learning

• A learner M FIGRELEX-INF-learns (FIGRELEX-TXT-learns) a set
of figures ℱ ⊆ 𝒦∗ ⟺ M FIGEX-INF-learns (FIGEX-TXT-
learns)ℱ, and if a target K ∈ 𝒦∗ ⧵F, then for all informants
(texts) σK,M(σK) does not converge to any hypothesis

• FIGEX-INF = FIGRELEX-INF
– If K ∈ 𝒦∗⧵F, then for all P ∈ 𝒫∗, there exists an example

that is not consistent with P
• κ(𝒫N) is FIGRELEX-TXT-learnable only if N = {1}
– Example: Let N = {2} and K = {(0, 0), (1/2, 1/2), (1, 1)}).

Then K ⊂ κ(SP({0, 3})), and outputs converges to this
program

• In learning of languages, a class ℒ is reliably inferable
from texts if and only if ℒ contains no infinite concept

/
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Refutable Learning

• A learner M FIGREFEX-INF-learns (FIGREFEX-TXT-learns) a set
of figures ℱ ⊆ 𝒦∗ ⟺ MFIGEX-INF- (FIGEX-TXT-) learns ℱ,
and if a target K ∈ 𝒦∗ ⧵ F, then for all informants (texts),
M stops and outputs a special symbol ⊥

• κ(𝒫m) (m ∈ ℕ) is not FIGREFEX-INF-learnable
– FIGRELEX-TXT ⊈ FIGREFEX-INF

• FIGREFEX-INF ⊈ FIGRELEX-TXT holds
• FIGREFEX-TXT ⊆ FIGRELEX-TXT from Definition, and trivially
FIGREFEX-TXT ≠ FIGRELEX-TXT

• FIGREFEX-TXT ⊂ FIGREFEX-INF also holds
• FIGREFEX-TXT ≠ ∅

/
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/



Effective Learning

• A learner M FIGEFEX-INF-learns (FIGEFEX-TXT-learns) a set of
figures ℱ ⊆ 𝒦∗ ⟺ M FIGEX-INF- (FIGEX-TXT-) learns ℱ,
and if a target K ∈ 𝒦∗ ⧵ F, then for all informants (texts),
there exists some monotone function ε:ℕ → ℝ+, where
limi→∞ ε(i) = 0 and GE(K,M(σK)(i)) ≤ ε(i)

• κ(𝒫) is FIGEFEX-INF-learnable, and κ(𝒫m) (m ∈ ℕ) is not
FIGEFEX-INF-learnable
– FIGEFEX-INF ⊈ FIGEX-TXT and FIGEX-TXT ⊈ FIGEFEX-INF

• FIGREFEX-INF ⊆ FIGEFEX-INF from Definition, and trivially
FIGREFEX-INF ≠ FIGEFEX-INF

• FIGEFEX-TXT = ∅
– FIGEFEX-TXT ⊂ FIGREFEX-TXT (different from learning from

informants)
/
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Approximative Learning

• A learnerMFIGEXε-INF-learns (FIGEXε-TXT-learns) a set of fig-
ures ℱ ⊆ 𝒦∗ ⟺ For all K ∈ 𝒦∗ and informants (texts)
σK, M(σK) converges to P such that GE(K, P) = 0 if K ∈ ℱ,
and to Q such that GE(K,Q) ≤ ε if K ∈ 𝒦∗ ⧵ F

• For all ε ∈ ℝ+, FIGEXε-TXT = FIGEX-TXT
• For all ε ∈ ℝ+, FIGEXε-TXT = FIGEXε-INF
– Since if ℱ ∈ FIGEXε-INF, then F ⊆ 𝒫≤k

• FIGREFEX-INF ⊂ FIGEXε-INF

/
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