ALT 2010 October 8, 2010

Learning Figures with the Hausdorff Metric by Fractals

Mahito SUGIYAMA^{1,2}, Eiju HIROWATARI³, Hideki TSUIKI¹ & Akihiro YAMAMOTO¹

¹Kyoto University, ²JSPS Research Fellow ³The University of Kitakyushu

- Constructing a computational learning model for analog data with discretization
 - 1. Gold-style learning model as a base model
 - Computable Analysis to give theoretical support for discretizing process of analog data
 - 3. Fractals to represent (and compute) continuous objects

- Constructing a computational learning model for analog data with discretization
 - 1. Gold-style learning model as a base model
 - Computable Analysis to give theoretical support for discretizing process of analog data
 - 3. Fractals to represent (and compute) continuous objects

Targets: Figures (non-empty compact sets in \mathbb{R}^n)

- Constructing a computational learning model for analog data with discretization
 - 1. Gold-style learning model as a base model
 - Computable Analysis to give theoretical support for discretizing process of analog data
 - 3. Fractals to represent (and compute) continuous objects

Targets: Figures (non-empty compact sets in \mathbb{R}^n)

Examples for learning: Rational closed intervals

- Constructing a computational learning model for analog data with discretization
 - 1. Gold-style learning model as a base model
 - Computable Analysis to give theoretical support for discretizing process of analog data
 - 3. Fractals to represent (and compute) continuous objects

Targets: Figures (non-empty compact sets in \mathbb{R}^n)

Examples for learning: Rational closed intervals

- Constructing a computational learning model for analog data with discretization
 - 1. Gold-style learning model as a base model
 - Computable Analysis to give theoretical support for discretizing process of analog data
 - 3. Fractals to represent (and compute) continuous objects

Targets: Figures (non-empty compact sets in \mathbb{R}^n)

Hypotheses: Codes (Programs)

representing fractals

Evaluation of hypotheses:

Hausdorff metric (generalization errors)

Examples for learning: Rational closed intervals

Main Results

- 1. We formulated learning of figures with self-similar sets (fractals) using the Gold-style learning model
 - Collage Theorem gives justification for self-similar sets
- 2. We analyzed the hierarchy of learnabilities (next slide)
- 3. We revealed the mathematical connection between Fractal Geometry and Computational Learning
 - The complexity of learning (sample size) is measured by using the Hausdorff dimension and the VC dimension
 - The Hausdorff dimension and the VC dimension are key concepts of Fractal Geometry and the Valiantstyle learning model, respectively

Precise Result of the Hierarchy

Outline

- Background
- Methods for learning figures
- Learnabilities under various learning criteria
- Characterization with dim_H and dim_{VC}
- Conclusion

Outline

- Background
- Methods for learning figures
- Learnabilities under various learning criteria
- Characterization with dim_H and dim_{VC}
- Conclusion

Analog data (reals)

Discretization by measurement

Discretization by measurement

Discretization by measurement

An Fatal Error Caused by Discretization

- Solve the system of linear equations [Schroder, o₃] 40157959.0 x + 67108865.0 y = 1 67108864.5 x + 112147127.0 y = 0
 - Obtained by the well-known formula

$$x = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{21} a_{12}}, \quad y = \frac{b_2 a_{11} - b_1 a_{21}}{a_{11} a_{22} - a_{21} a_{12}}$$

By floating point arithmetic with double precision variables (IEEE 754):

$$x = 112147127, y = -67108864.5$$

• The correct solution:

$$x = 224294254$$
, $y = -134217729$

Our Strategy

- Use effective computing in Computable Analysis to treat discretization precess appropriately
 - While a computer reads more and more precise information of the input, it produces more and more accurate approximations of the result
- Construct an effective learning with the Gold-style learning model
 - While a learner reads more and more precise examples of the target, it produces more and more accurate hypotheses of the target
 - This accuracy corresponds to a generalization error

Treat Data as Intervals

Discretization by measurement

Leaning from Geometrical View

 A learner learns a figure that intersects with all intervals

Outline

- Background
- Methods for learning figures
- Learnabilities under various learning criteria
- Characterization with dim_H and dim_{VC}
- Conclusion

Positive examples: Rational closed intervals intersecting the learning target

Negative examples: Rational closed intervals disjoint with the learning target

Hypotheses: Codes that represent selfsimilar sets (self-similar programs)

Hypotheses: Codes that represent self-Positive examples: Rational closed intervals intersecting the learning target similar sets (self-similar Negative examples: Rational closed intervals disjoint with the learning target programs) Positive example Learner Reads a presentation (infinite sequence of Self-similar set examples), and produces hypotheses **Negative Target** represented by example figure a hypothesis

Hypotheses: Codes that represent self-Positive examples: Rational closed intervals intersecting the learning target similar sets (self-similar Negative examples: Rational closed interprograms) vals disjoint with the learning target Positive example Learner Reads a presentation (infinite sequence of Self-similar set examples), and pro-**Negative Target** represented by duces hypothese's example figure a hypothesis

Generalization Errors

- We measure "goodness" of a hypothesis by a generalization error
 - We use the Hausdorff metric (distance between figures)
- The Hausdorff distance between figures A and B (denoted by $d_H(A, B)$) is the minimum ε satisfying $A \subset B_{\varepsilon}$ and $B \subset A_{\varepsilon}$

Hypotheses Represent Self-Similar Sets

We use logic programs to represent self-similar sets

$$\begin{cases} \varphi_1 \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \\ \varphi_2 \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix} \end{cases} \qquad \begin{cases} Path(\lambda) \\ Path(0x) \leftarrow Path(x) \\ Path(1x) \leftarrow Path(x) \\ Path(3x) \leftarrow Path(x) \end{cases}$$

- Any figure can be approximated by some self-similar set (Corollary of Collage Theorem) [Falconer, 03]
 - For all figure K and $\delta > 0$, there exists a self-similar set V such that $d_H(K, V) < \delta$

Outline

- Background
- Methods for learning figures
- Learnabilities under various learning criteria
- Characterization with dim_H and dim_{VC}
- Conclusion

Learning Self-Similar Sets in the Limit

- We formulate learning of self-similar sets based on the Gold-style learning model
 - A target is always represented by some program
- A learner FigEx-Inf-learns (FigEx-Txt-learns) a set of figures $\mathscr{F} \subseteq \mathscr{K}^* \iff$ For all $K \in \mathscr{F}$ and informants (texts), its output converges to a hypothesis P, where $\mathbf{GE}(K,P)=0$
 - \mathcal{K}^* : The set of figures, $\mathbf{GE}(K, P) := d_H(K, \kappa(P))$ • $\kappa(P)$ denotes the set represented by a program P
 - Notation: \mathscr{F} is **CR**-learnable $\iff \mathscr{F} \in \mathbf{CR}$
- We also consider consistent learning (FigCons-Inf- and FigCons-Txt-learning), where every hypothesis is consistent with received examples so far

The Hierarchy of Learnabilities

Approach to All Figures

- In FigEx-learning, the space F for learning (concept space) is given (a priori)
 - When a target figure $K \notin \mathcal{F}$, nothing is guaranteed
- Here we give some guarantee to such cases
 - We treat not only self-similar sets, but also figures
 - The similar model has been studied in learning of languages [Mukouchi and Arikawa, 95]
- 1. Refutable learning: a learner stops (if a target $K \notin \mathcal{F}$)
- 2. Reliable learning: hypotheses do not converge (if $K \notin \mathcal{F}$)
- 3. Effective learning: generalization errors converge to zero
- 4. Learning with generalization error bounds: hypotheses converge under the error bounds

The Hierarchy of Learnabilities

Conclusion So Far

- Learning of figures was realized in computational manner using the Gold-style learning model
 - Discretization process was treated by using the effective computing model in Computable Analysis
 - Generalization error of a hypothesis was measured by the Hausdorff metric
- Learnabilities of figures were analyzed under existing and new learning criteria

Conclusion So Far

- Learning of figures was realized in computational manner using the Gold-style learning model
 - Discretization process was treated by using the effective computing model in Computable Analysis
 - Generalization error of a hypothesis was measured by the Hausdorff metric
- Learnabilities of figures were analyzed under existing and new learning criteria
- We show a mathematical connection between Fractal Geometry and Computational Learning using the Hausdorff dimension and the VC dimension

Outline

- Background
- Methods for learning figures
- Learnabilities under various learning criteria
- Characterization with dim_H and dim_{VC}
- Conclusion

The Hausdorff Dimension (dim_H)

- The Hausdorff dimension is a central concept of fractals
 - This indicates how much space a sets occupies near to each of its points
 - Defined by the Hausdorff measure
- Extension of usual (topological) dimension

The Hausdorff Dimension (dim_H)

- The Hausdorff dimension is a central concept of fractals
 - This indicates how much space a sets occupies near to each of its points
 - Defined by the Hausdorff measure
- Hausdorff measures generalize ideas of length, area, ...
 - Defined by using "covering" of a set
- s-dimensional Hausdorff measure of $K := \lim_{\epsilon \to 0} \mathcal{H}_{\epsilon}^{s}(K)$
 - Countable set *U* is a ε-cover of $K \iff ∀U ∈ U$. |U| ≤ ε, and $X ⊂ \bigcup_{U ∈ U} U$
 - $\mathcal{H}_{\varepsilon}^{s}(K)$ = $\inf\{\sum_{U \in U} |U|^{s} | U \text{ is a } \varepsilon\text{-cover of } K\}$

Characterization with dim_H

- General case:
 If level k is large enough, for every target figure K and for any s < dim_HK, the figure K can be covered by N intervals, where N ≥ b^{ks}
- Special case: Moreover, if a target figure K is represented by some self-similar program P, then K can be covered by N intervals, where $N \ge b^{k\dim_H K}$
 - We use base-b partition in both cases

Characterization with dim_H

- Example:
 - K: The Sierpiński triangle (dim_HK = 1.584...)
 - N(K): # of level-k positive examples
- With 2-dimensional base-2 partition
 - Level 1: $3 \le N(K)$ ($2^{\dim_H K} = 3$)
 - Level 2: $9 \le N(K)$ $(4^{\dim_H K} = 9)$
- With 2-dimensional base-3 partition
 - Level 1: $6 \le N(K)$ (3^{dim_HK} = 5.70 ...)

The VC Dimension (dim_{VC})

- The VC dimension is a parameter of separability (complexity) of a class
 - How many points can be separated?
 - In the Valiant-style (PAC) learning model, the sample size is characterized by the VC dimension

in the real line \mathbb{R}

 $\dim_{VC} I = 2$

I: The class of open intervals *H*: The class of half spaces in 2-dimensional real-space \mathbb{R}^2

Characterization with dim_H and dim_{VC}

• The VC dimension of the set of level k programs \mathcal{P}^k is equal to the cardinality of the number of level k intervals

Characterization with dim_H and dim_{VC}

- The VC dimension of the set of level k programs \mathcal{P}^k is equal to the cardinality of the number of level k intervals
- General case:
 If level k is large enough, for every target figure K and for any s < dim_HK, the figure K can be covered by N intervals, where N ≥ b^{ks}
- Special case: Moreover, if a target figure K is represented by some self-similar program P, then K can be covered by N intervals, where $N \ge b^{k\dim_H K}$
 - We use base-b partition in both cases

Characterization with dim_H and dim_{VC}

- The VC dimension of the set of level k programs \mathcal{P}^k is equal to the cardinality of the number of level k intervals
- General case:
 If level k is large enough, for every target figure K and for any s < dim_HK, the figure K can be covered by N intervals, where N ≥ (dim_{VC} P^k)^{s/n}
- Special case: Moreover, if a target figure K is represented by some selfsimilar program P, then K can be covered by N intervals, where $N \ge (\dim_{VC} \mathcal{P}^k)^{\dim_{H} K/n}$
 - We use base-b partition in both cases

Outline

- Background
- Methods for learning figures
- Learnabilities under various learning criteria
- Characterization with dim_H and dim_{VC}
- Conclusion

Conclusion

- Learning of figures was realized in computational manner using the Gold-style learning model
 - Discretization process was treated by using the effective computing model in Computable Analysis
 - Generalization error of a hypothesis was measured by the Hausdorff metric
- Learnabilities of figures were analyzed under existing and new learning criteria
- A novel mathematical connection between Fractal Geometry and Computational Learning was shown using the Hausdorff dimension and the VC dimension

Appendix

Background

- Machine learning from analog data
 - The discrete Fourier analysis is a typical method
 - But only the direction of the time axis is discretized
 - We discretized all axes and give a fully computational learning model
- What kind of representation system is appropriate?
 - Recursive algorithms are key to bridge continuous and discrete
 - FFT is used in the discrete Fourier analysis
 - Fractals are geometric concepts of recursiveness
 - They are recursive algorithms to generate fractals
- Formulate "Learning figures by fractals"

Computational and Statistical Learning

Computational and Statistical Learning

	reat success in nowledge Discovery \
Computational learning	Statistical learning
Discrete (languages)	Continuous (real-valued functions)
ions Symbol-level s) (algorithms) (Signal-level nultilayer perceptrons)
Generalization error (Characteristic func.)	Generalization error (KL divergence)
	ctyle learning model eometric Computational learning Discrete (languages) ions Symbol-level s) (algorithms) (algorithms)

Computational and Statistical Learning

Self-Similar Sets

- Self-similar sets are in a class of fractals
 - defined as a fixed point of a finite set of contractions
- $\varphi: X \to X$ is a contraction $\iff d(\varphi(x), \varphi(y)) \le cd(x, y)$ (0 < c < 1, d is a metric on X)

$$\begin{cases} \varphi_{1} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} \\ \varphi_{2} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix} \\ \varphi_{3} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ \varphi(K) = \bigcup_{i=1}^{3} \varphi_{i}(K) \end{cases}$$

Self-Similar Programs

- Represent Φ as a logic program (self-similar program) $SP(W) = \{Path(\lambda)\} \cup \{Path(wx) \leftarrow Path(x) \mid w \in W\}$
- Bottom-up construction of the least Herbrand model of SP(W) corresponds to computing Fix(Φ) effectively
- Example:

$$SP(\{0, 1, 3\}) = \left\{ Path(\lambda), Path(0x) \leftarrow Path(x), \\ Path(1x) \leftarrow Path(x), Path(3x) \leftarrow Path(x) \right\}$$

Bottom-up construction:

```
{Path(\lambda)}, {Path(0), Path(1), Path(3)}, \ {Path(00), Path(01), Path(03), Path(10), Path(11)}, \ {Path(13), Path(30), Path(31), Path(33)}, \dots
```

Collage Theorem

 Hausdorff distance between a figure K and a self-similar set V can be bounded (Collage Theorem) [Barnsley, 93]

$$d_H(K, V) \leq \frac{d_H(K, \bigcup_{\varphi \in C} \varphi(K))}{1 - c}$$

(V is a self-similar set for C, c is a contractivity factor of C)

 Any figure can be approximated (in the meaning of the Hausdorff metric) by some self-similar set arbitrarily closely [Falconer, 03]

For any figure K and $\delta > 0$, there exists a self-similar set V satisfying $d_H(K, V) < \delta$

Learning in the Limit

- Introduce a criterion corresponding to Ex-learning
- A learner **M** FigEx-Inf-learns (FigEx-Txt-learns) a set of figures $\mathscr{F} \subseteq \mathscr{K}^* \iff$ For all $K \in \mathscr{F}$ and informants (texts) of K, $M(\sigma_K)$ converges to a hypothesis P such that GE(K, P) = 0
 - **GE**(K, P) is a generalization error, define by $d_H(K, \kappa(P))$
 - d_H is the Hausdorff distance
 - − Hypotheses converge ⇔ every hypothesis is same from some point
- \mathscr{F} is CR-learnable if some learner M CR-learns $\mathscr{F} \subseteq \mathscr{K}^*$
 - CR denotes the class of CR-learnable sets of figures
 - \mathcal{F} is **CR**-learnable $\iff \mathcal{F} \in \mathbf{CR}$

Analysis of Learnability in the Limit

- The set $\kappa(\mathcal{P}^*)$ is FigEx-Inf-learnable (\mathcal{K}^* is not FigEx-Inf-learnable)
 - $-\kappa(\mathscr{P}^*)$ is recursively enumerable
 - For all $P \in \mathscr{P}^*$ and w, whether $\rho(w) \in \mathscr{Q}(\kappa(P))$ can be decidable in finite time
 - Use the strategy of "generate and test"
- The set $\kappa(\mathcal{P}^*)$ is not FigEx-Txt-learnable
- The set $\kappa(\mathcal{P}_N)$ (N is finite set of natural numbers) is FigEx-Txt-learnable
 - If a learner knows the number of contractions a priori, it can learn from texts

The Hierarchy of Learnabilities

Consistent Learning

- A learner M FigCons-Inf-learns (FigCons-Txt-learns) a set of figures $\mathscr{F} \subseteq \mathscr{K}^* \iff M$ FigEx-Inf-learns (FigEx-Txt-learns) \mathscr{F} , and every hypothesis is consistent with received examples so far
 - \mathscr{F} is FigCons-Inf-learnable $\Rightarrow \mathscr{F}$ is FigEx-Inf-learnable
 - \mathscr{F} is FigCons-Txt-learnable $\Rightarrow \mathscr{F}$ is FigEx-Txt-learnable
- FigEx-Inf = FigCons-Inf
 - If $\mathscr{F} \in \mathsf{FigEx-Inf}$, M always outputs a consistent hypothesis
- FigEx-Txt = FigCons-Txt
 - If ℱ ∈ FigEx-Тхт, M always outputs a consistent hypothesis

The Hierarchy of Learnabilities

Extension of Learning in the Limit

- In FigEx-Inf- (and FigEx-Txτ-) learning, F is given as a concept space a priori
 - When a target figure $K \notin \mathcal{F}$, nothing is guaranteed
- Here we give some guarantee to such cases, where a target figure $K \notin \mathcal{F}$
 - More difficult than FigEx-Inf- and FigEx-Txt-learning
- We consider the following criteria: 1) refutable learning,
 2) reliable learning,
 3) effective learning,
 and
 4) learning with generalization error bounds
 - If a target $K \notin \mathcal{F}$, 1) a learner stops, 2) hypotheses do not converge, 3) generalization errors converge to zero, and 4) converges under the error bounds

Reliable Learning

- A learner M FigRelEx-Inf-learns (FigRelEx-Txt-learns) a set of figures $\mathscr{F} \subseteq \mathscr{K}^* \iff M$ FigEx-Inf-learns (FigEx-Txt-learns) \mathscr{F} , and if a target $K \in \mathscr{K}^* \setminus F$, then for all informants (texts) σ_K , $M(\sigma_K)$ does not converge to any hypothesis
- FIGEX-INF = FIGRELEX-INF
 - If $K \in \mathcal{K}^* \setminus F$, then for all $P \in \mathcal{P}^*$, there exists an example that is not consistent with P
- $\kappa(\mathcal{P}_N)$ is FigRelEx-Txt-learnable only if $N = \{1\}$
 - Example: Let $N = \{2\}$ and $K = \{(0,0), (1/2,1/2), (1,1)\}$). Then $K \subset \kappa(SP(\{0,3\}))$, and outputs converges to this program
- In learning of languages, a class $\mathscr L$ is reliably inferable from texts if and only if $\mathscr L$ contains no infinite concept

The Hierarchy of Learnabilities

Refutable Learning

- A learner M FigRefEx-Inf-learns (FigRefEx-Txt-learns) a set of figures $\mathscr{F} \subseteq \mathscr{K}^* \iff M$ FigEx-Inf- (FigEx-Txt-) learns \mathscr{F} , and if a target $K \in \mathscr{K}^* \setminus F$, then for all informants (texts), M stops and outputs a special symbol \bot
- $\kappa(\mathcal{P}_m)$ $(m \in \mathbb{N})$ is not FigRefEx-Inf-learnable
 - FIGRELEX-TXT ⊈ FIGREFEX-INF
- FigRefEx-Inf ⊈ FigRelEx-Txt holds
- FIGREFEX-TXT ⊆ FIGRELEX-TXT from Definition, and trivially
 FIGREFEX-TXT ≠ FIGRELEX-TXT
- FigRefEx-Txt ⊂ FigRefEx-Inf also holds
- FIGREFEX-TXT $\neq \emptyset$

The Hierarchy of Learnabilities

Effective Learning

- A learner M FigErEx-Inf-learns (FigErEx-Txt-learns) a set of figures $\mathscr{F} \subseteq \mathscr{K}^* \iff M$ FigEx-Inf- (FigEx-Txt-) learns \mathscr{F} , and if a target $K \in \mathscr{K}^* \setminus F$, then for all informants (texts), there exists some monotone function $\varepsilon: \mathbb{N} \to \mathbb{R}^+$, where $\lim_{i \to \infty} \varepsilon(i) = 0$ and $GE(K, M(\sigma_K)(i)) \le \varepsilon(i)$
- $\kappa(\mathcal{P})$ is FigEfEx-Inf-learnable, and $\kappa(\mathcal{P}_m)$ ($m \in \mathbb{N}$) is not FigEfEx-Inf-learnable
 - FIGEFEX-INF ⊈ FIGEX-TXT and FIGEX-TXT ⊈ FIGEFEX-INF
- FIGREFEX-INF \subseteq FIGEFEX-INF from Definition, and trivially FIGREFEX-INF \neq FIGEFEX-INF
- FIGEFEX-TXT = \emptyset
 - FigEFEx-Txτ ⊂ FigReFEx-Txτ (different from learning from informants)

The Hierarchy of Learnabilities

Approximative Learning

- A learner **M** FigEx^{ε}-Inf-learns (FigEx ε -Txt-learns) a set of figures $\mathscr{F} \subseteq \mathscr{K}^* \iff$ For all $K \in \mathscr{K}^*$ and informants (texts) σ_K , $\mathbf{M}(\sigma_K)$ converges to P such that $\mathbf{GE}(K,P) = 0$ if $K \in \mathscr{F}$, and to Q such that $\mathbf{GE}(K,Q) \le \varepsilon$ if $K \in \mathscr{K}^* \setminus F$
- For all $\varepsilon \in \mathbb{R}^+$, FigEx $^{\varepsilon}$ -TxT = FigEx-TxT
- For all $\varepsilon \in \mathbb{R}^+$, FigEx $^{\varepsilon}$ -Txt = FigEx $^{\varepsilon}$ -Inf
 - Since if $\mathscr{F} \in \mathsf{FigEx}^{\varepsilon}$ -Inf, then $F \subseteq \mathscr{P}_{\leq k}$
- FigRefEx-Inf \subset FigEx $^{\varepsilon}$ -Inf

The Hierarchy of Learnabilities

