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Contributions

. TheMCL (MinimumCode Length)
– A new measure to score clustering results
– Needed to distinguish each cluster under some fixed encod-

ing scheme for real-valued variables

. COOL (COding-Oriented cLustering)
– A general clustering approach
– Always finds the best clusters (i.e., the global optimal solution)

which minimizes the MCL in O(nd)
– Parameter tuning is not needed

. G-COOL (COOLwith the Gray code)
– Achieves internal cohesion and external isolation
– Finds arbitrary shaped clusters
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Clustering Focusing on Compression

• The MDL approach [Kontkanen et al., ]
– Data encoding has to be optimized

∘ All encoding schemes are (implicitly) considered
∘ The time complexity ⩾ O(n2)

• The Kolmogorov complexity approach [Cilibrasi, ]
– Measures the distance between data points based on com-

pression of finite sequences
∘ Difficult to apply multivariate data

– Actual clustering process is the traditional agglomerative hi-
erarchical clustering
∘ The time complexity ⩾ O(n2)

• Both approaches are not suitable for massive data
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Our Strategy

• Requirements:
. Fast, and linear in the data size
. Robust to changes in input parameters
. Can find arbitrary shaped clusters
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Our Strategy

• Requirements:
. Fast, and linear in the data size
. Robust to changes in input parameters
. Can find arbitrary shaped clusters

• Solutions:
. Fix an encoding scheme for continuous variables

– Motivated by Computable Analysis [Weihrauch, ]
. Clustering = Discretizing real-valued data

– Always finds the best results w.r.t. the MCL
. Use the Gray code for real numbers [Tsuiki, ]

– Discretized data points are overlapped and adjacent clus-
ters are merged
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MCL (Minimum Code Length)

• The MCL is the code length of the maximally compressed
clusters by using a fixed encoding scheme
• The MCL is calculated in O(nd) by using radix sort
– n and d are the number of data and dimension, resp.
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MCL (Minimum Code Length)

• The MCL is the code length of the maximally compressed
clusters by using a fixed encoding scheme
• The MCL is calculated in O(nd) by using radix sort
– n and d are the number of data and dimension, resp.

Example: X = {0.1, 0.2, 0.8, 0.9},
𝒞1 = {{0.1, 0.2}, {0.8, 0.9}}
𝒞2 = {{0.1}, {0.2, 0.8}, {0.9}}

– Use binary encoding
– Which is preferred?
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Binary Encoding
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MCL with Binary Encoding
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Definition of MCL

• Fix an embedding γ :ℝd → Σω (Σ = {0,1} usually)
• For p ∈ range(γ) and P ⊂ range(γ), define

Φ(p ∣P) ≔ {w ∈ Σ∗ p ∈ ↑w and P ∩ ↑v = ∅ for all v
such that |v| = |w| and p ∈ ↑v }

– Each element in Φ(p ∣P) is a prefix that discriminates p from P

For a partition 𝒞 = {C1,… ,CK} of a data set X,
MCL(𝒞) ≔ ∑ i∈{1,…,K} Li(𝒞), where

Li(𝒞) ≔ min{|W|
γ(Ci) ⊆ ↑W and

W ⊆ ൘ x∈CiΦ(γ(x) ∣ γ(X ⧵ Ci)) }
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Minimizing MCL and Clustering

Clusteringunder theMCL criterion is to find theglobal op-
timal solution that minimizes the MCL

– Find 𝒞op such that
𝒞op ∈ argmin

𝒞∈𝒞(X)⩾K
MCL(𝒞),

where 𝒞(X)⩾K = {𝒞 is a partition of X ∣ #C ⩾ K }

• We give the lower bound of the number of clusters K as a
input parameter
– 𝒞op becomes one set {X} without this assumption
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Optimization by COOL

• COOL solves the optimization problem in O(nd)
– n and d are the number of data and dimension, resp.

∘ The naïve approach takes exponential time and space
– Computing process of theMCL becomes clustering process it-

self via discretization

• COOL is level-wise, and makes the level-k partition 𝒞k

from k = 1, 2,… , which holds the following condition:
– For all x, y ∈ X, they are in the same cluster ⟺

v = w for some v ⊏ γ(x) andw ⊏ γ(y) with |v| = |w| = k
∘ Level-k partitions form hierarchy
∘ For C ∈ 𝒞k, there exists 𝒟 ⊆ 𝒞k+1 such that ⋃ 𝒟 = C

• For all C ∈ 𝒞op, there exists k such that C ∈ 𝒞k
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Noise Filtering by COOL

• Noise filtering is easily implemented in COOL
• Define 𝒞⩾N ≔ {C ∈ 𝒞 ∣ #C ⩾ N} for a partition 𝒞
– See a cluster C as noises if #C < N
• Example: Given 𝒞 = {{0.1}, {0.4, 0.5, 0.6}, {0.9}}
– 𝒞⩾2 = {{0.4, 0.5, 0.6}}, and 0.1 and 0.9 are noises
• We input the lower bound N of the cluster size as a input
parameter
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Algorithm of COOL
Input: A data set X, two lower bounds K and N
Output: The optimal partition 𝒞op and noises
function COOL(X, K, N)
: Find partitions 𝒞1

⩾N,… ,𝒞m
⩾N such that ‖𝒞m−1

⩾N ‖ < K ⩽ ‖𝒞m
⩾N‖

: (𝒞op, MCL(𝒞op)) ← FINDCLUSTERS(X, K, {𝒞1
⩾N,… ,𝒞m

⩾N})
: return (𝒞op, X ⧵ ⋃ 𝒞op)
function FINDCLUSTERS(X, K, {𝒞1,… ,𝒞m})
: Find k such that ‖𝒞k−1‖ < K and ‖𝒞k‖ ⩾ K
: 𝒞op ← 𝒞k

: if K = 2 then return (𝒞op, MCL(𝒞op))
: for each C in 𝒞1 ∪ … ∪ 𝒞k−1

: (𝒞, L) ← FINDCLUSTERS(X ⧵ C, K − 1, {𝒞1,… ,𝒞k})
: if MCL(𝒞 ∪ C) < MCL(𝒞op) then 𝒞op ← C ∪ 𝒞
: return (𝒞op, MCL(𝒞op))
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Gray Code

• Real numbers in [0, 1] are encoded with 0, 1, and ⊥
Binary: 0.1 → 00011… , 0.25 → 00111…
Gray: 0.1 → 00010… , 0.25 → 0⊥100…

• Originally, another binary encoding of natural numbers
– Especially important in applications of conversion between

analog and digital information [Knuth, ]

The Gray code embedding is an injection γG that maps x ∈ [0, 1]
to an infinite sequence p0p1p2 … , where
– pi ≔ 1 if 2−im−2−(i+1) < x < 2−im+2−(i+1) for an oddm, pi ≔ 0

if the same holds for an evenm, and pi ≔ ⊥ if x = 2−im−2−(i+1)

for some integerm
– For a vector x = (x1,… , xd), γG(x) = p1

1 … pd1p
1
2 … pd2 …
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Gray Code Embedding
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COOL with Binary Encoding
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Theoretical Analysis of G-COOL

• Use the Gray code as a fixed encoding in COOL
– It achieves internal cohesion and external isolation

• Theorem: For the level-k partition 𝒞k, x, y ∈ X are in the
same cluster if d∞(x, y) < 2−(k+1)

– Thus x, y are in the different clusters only if d∞(x, y) ⩾ 2−(k+1)

– d∞(x, y) = maxi∈{1,…,d}|xi − yi| (L∞ metric)
∘ Two adjacent intervals overlap and they are agglomerated

• Corollary: In the optimal partition 𝒞op, for all x ∈ C (C ∈
𝒞op), its nearest neighbor y ∈ C
– y is nearest neighbor of x ⟺ y ∈ argminy∈Xd∞(x, y)
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Demonstration of G-COOL
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Experimental Methods

• Analyze G-COOL empirically with synthetic and real
datasets compared to DBSCAN and K-means
– Synthetic datasets were generated by the R package cluster-

Generation [Qiu and Joe, ]
∘ n = 1, 500 for each cluster and d = 3

– Real datasets were geospatial images from Earth-as-Art
∘ reduced to  ×  pixels, translated into binary images

– All data were normalized by min-max normalization

• G-COOL was implemented by R (version ..)
• Internal and External measure were used
– Internal: MCL, connectivity, Silhouette width
– External: adjusted Rand index
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Results (Synthetic datasets)
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Results (Real datasets)
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Results (Real datasets)

Name n K Running time (s) MCL
GC KM GC KM

Delta   . .  
Dragon   . .  
Europe   . .  
Norway   . .  
Ganges   . .  

GC: G-COOL, KM: K-means
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Conclusion

• Integrate clustering and its evaluation in the coding-
oriented manner
– An effective solution for two essential problems, how to mea-

sure goodness of results and how to find good clusters
∘ No distance calculation and no data distribution

• Key ideas:
. Fix of an encoding scheme for real-valued variables

– Introduced the MCL focusing on compression of clusters
– Formulated clusteringwith theMCL, and constructedCOOL

that finds the global optimal solution linearly
. The Gray code

– We showed efficiency and effectiveness of G-COOL by the-
oretically and experimentally
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Notation (/)
• A datum x ∈ ℝd, a data set X = {x1,… , xn}
– #X is the number of elements in X
– X ⧵ Y is the relative complement of Y in X
• Clustering is partition of X into K subsets (clusters) C1, … , CK

– Ci ≠ ∅ and Ci ∩ Cj = ∅
– We call 𝒞 = {C1,… ,CK} a partition of X
– 𝒞(X) = {𝒞 ∣ 𝒞 is a partition of X}
• The set of finite and infinite sequences over an alphabet Σ are
denoted by Σ∗ and Σω, resp.
– The length |w| is the number of symbols other than ⊥

∘ Ifw = 11⊥100⊥⊥ … , then |w| = 5
– For a set of sequencesW, |W| = ∑w∈W|w|
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Notation (/)
• An embedding of ℝd is an injective function γ from ℝd to Σω

• For p, q ∈ Σω, define p ⩽ q if pi = qi for all iwith pi ≠ ⊥
– Intuitively, q is more concrete than p
• For w ∈ Σ∗, we writew ⊏ p ifw⊥ω ⩽ p
– ↑w = {p ∈ range(γ) ∣ w ⊏ p} forw ∈ Σ∗

– ↑W = {p ∈ range(γ) ∣ w ⊏ p for some w ∈ W} forW ⊆ Σ∗

• The following monotonicity holds
– γ−1(↑v) ⊆ γ−1(↑w) iff v⊥ω ⩾ w⊥ω
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Optimization by COOL

• The optimal partition𝒞op can be constructed by the level-
k partitions

For all C ∈ 𝒞op, there exists k such that C ∈ 𝒞k

• The level-k partitions have the hierarchical structure
– For each C ∈ 𝒞k we have ⋃ 𝒟 = C for some D ⊆ 𝒞k+1

– COOL is similar to divisive hierarchical clustering

COOL always outputs the global optimal partition 𝒞op

• The time complexity is O(nd) (best) and O(nd + K! ) (worst)
– Usually K ≪ n holds, hence O(nd)
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The Multi-Dimensional Gray Code

• Use thewrapping functionφ(p1,… , pd) ≔ p1
1 … pd1p

1
2 … pd2 …

Define the d-dimensional Gray code embedding γdG:ℐ →
Σω

⊥,d by γdG(x1,… , xd) ≔ φ(γG(x1),… , γG(xd))

• We abbreviate d of γdG if it is understood from the context
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Internal Measures

• Connectivity [Handl et al., ]
– Conn(𝒞) = ∑x∈X ∑Mi=1 f(x,nn(x, i))/i

∘ nn(x, j) is the i-th neighbor of x, f(x, y) is 0 if x and y be-
long to the same cluster, and 1 otherwise

∘ M is an input parameter (we set as )
– Takes values from 0 to ∞, should be minimized
• Silhouette width
– The average of Silhouette value S(x) for each x
S(x) = (b(x) − a(x)/max(b(x), a(x)))
∘ a(x) = ‖C‖−1 ∑y∈C d(x, y) (x ∈ C)
∘ b(x) = minD∈𝒞⧵C ‖D‖−1 ∑y∈D d(x, y)

– Takes values from −1 to 1, should be maximized
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External Measures

• Adjusted Rand index
– Let the result be 𝒞 = {C1,… ,CK} and the correct parti-

tion be 𝒟 = {D1,… ,DM}
– Suppose nij ≔ ‖{x ∈ X ∣ x ∈ Ci, x ∈ Dj}‖. Then

∑i, j nijC2 − (∑i ‖Ci‖C2 ∑h ‖Dj‖C2)/nC2

2−1(∑i ‖Ci‖C2 + ∑h ‖Dj‖C2) − (∑i ‖Ci‖C2 ∑h ‖Dj‖C2)/nC2
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Discussion

• Results for synthetic datasets
– Best performance under the internal measures
– (nearly) Best performance under the internal measures
– G-COOL is efficient and effective

∘ DBSCAN is sensitive to input parameters
– The MCL works well as an internal measure
• Results for real datasets
– not good, and not bad

∘ There are no clear clusters originally
• G-COOL is a good clustering method
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RelatedWork

• Partitional methods [Chaoji et al., ]

• Mass-based methods [Ting and Wells, ]

• Density-based methods (DBSCAN [Ester et al., ]）
• Hierarchical clustering methods
(CURE [Guha et al., ], CHAMELEON [Karypis et al.,
])
• Grid-based methods
(STING [Wang et al., ], WaveCluster [Sheikholeslami et
al., ])
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Future Works

• Speeding up by using tree-structures such as BDD
• Apply to anomaly detection
• Theoretical analysis, in particular relation with Com-
putable Analysis
– Admissibility is a key property
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