
ICCS
July –, 

Semi-Supervised Learning for Mixed-
Type Data via Formal Concept Analysis

Mahito SUGIYAMA†,‡，Akihiro YAMAMOTO†

†Kyoto University
‡JSPS Research Fellow

/



Summary

• We propose a semi-supervised learning (SSL) method,
called SELF (SEmi-supervised Learning via FCA), using
Formal Concept Analysis (FCA)
– It can handle mixed-type data containing both discrete
and continuous variables
∘ Numerical data are discretized by binary encoding
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Summary

• We propose a semi-supervised learning (SSL) method,
called SELF (SEmi-supervised Learning via FCA), using
Formal Concept Analysis (FCA)
– It can handle mixed-type data containing both discrete
and continuous variables
∘ Numerical data are discretized by binary encoding

• Main contributions
. The first direct SSL method for mixed-type data

– FCA is shown to be a powerful tool for machine learn-
ing and knowledge discovery

. Can handle incomplete datasets
– missing values and missing labels

. Achieve good accuracy of classification experimentally
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Problems in Knowledge Discovery

• We need to treat more andmore massive datasets in KDD
• Problems:
. Many datasets are mixed-type: consist of both discrete

and continuous variables
. Many datasets are incomplete: contain NULL values

– Amissing value: Some value of a datum is missing
– Amissing label: Class label of a datum is missing
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Example: The Horse-Colic Dataset in
UCI Repository
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Mixed-Type Datasets
• Lots ofmixed-typedatawith discrete and continuous vari-
ables are available for KDD
– e.g. traffic data for intrusion detection, biochemical data, …
– Discrete variable: binary (T, F), nominal (A, B, … , v)

∘ e.g., sex, buying history, questionnaire results, …
– Continuous variable: real-valued (ℝ)

∘ Mainly obtained by measurement or observation
– cf. scales of measure (nominal, ordinal, interval, ratio)

• Only fewmachine learning and KDDmethods can directly
handle mixed-type data
– e.g. Decision tree-based methods such as C.

• Modern efficient and effective KDDmethod is needed
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Incomplete Datasets

• How to treat incomplete datasets with NULL（⊥）values is
important problem in KDD
– There are various types of NULL

• We consider the following two types of NULL
– Amissing value: Some value of a datum is missing
– Amissing label: Class label of a datum is missing

• Treat errors of discretized (quantized) real-valued data
– e.g. If a real number π = 3.1415… is discretized to 3.1, the
subsequent bits become unknown

– This error is not treated in most methods in (statistical) ma-
chine learning and KDD, but there always exist

/



Problems in Knowledge Discovery
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Problems in Knowledge Discovery

• We need to treat more andmore massive datasets in KDD
• Problems:
. Many datasets are mixed-type: consist of both discrete

and continuous variables
. Many datasets are incomplete: contain NULL values

– Amissing value: Some value of a datum is missing
– Amissing label: Class label of a datum is missing

. Labeling task costs high (money, time, … )
– We need class labels to obtain classification rules
– Yet we have lots of unlabeled data to be analyzed
– The concept of semi-supervised learning arose inma-
chine learning and KDD
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Semi-Supervised Learning

• It is a special form of classification
• Goal: Using (large amount of ) unlabeled data effectively,
together with (only few) labeled data, build better classi-
fiers [Zhu and Goldberg, ]
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Problems in SSL

• It is a special form of classification
• Goal: Using (large amount of ) unlabeled data effectively,
together with (only few) labeled data, build better classi-
fiers [Zhu and Goldberg, ]

• However, to date, no SSL method can treat mixed-type
datasets directly
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Problems in SSL and Our Solution

• It is a special form of classification
• Goal: Using (large amount of ) unlabeled data effectively,
together with (only few) labeled data, build better classi-
fiers [Zhu and Goldberg, ]

• However, to date, no SSL method can treat mixed-type
datasets directly

• We solve this problem by using Formal Concept Analysis
– We present a new SSL method, called SELF, for incom-
plete mixed-type datasets
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Flowchart of SELF
Input a training dataset

Discretize real-valued variables at level k

Preprocess for binary and nominal variables

k ← 0

Make concepts by FCA

Extract classi�cation rules using labeled data

All labeled data
are contained in 

consistent concepts

Classify a test dataset

Output a result

Make a context k ← k + 1

YES

NO

Remove objects
contained in

consistent concepts

Data preprocessing
phase

Learning phase

Classification phase
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Learning by SELF
• Learning from the following dataset (⊥ is the missing value)

Feature  Feature  Feature  Label

 T C . 
 F A . 
 T B � �
 F A . 
 T C . �
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Data Preprocessing (/)
• Learning from the following dataset (⊥ is the missing value)

Feature  Feature  Feature  Label

 T C . 
 F A . 
 T B � �
 F A . 
 T C . �

• Make a context in the data preprocessing phase

.T .A .B .C . .
 × ×
 ×
 × ×
 ×
 × ×
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Data Preprocessing (/)
• Learning from the following dataset (⊥ is the missing value)

Feature  Feature  Feature  Label

 T C . 
 F A . 
 T B � �
 F A . 
 T C . �

• Discretize the continuous feature (F) using binary encoding

0 1

0.28 0.54 0.79 0.81
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Data Preprocessing (/)
• Learning from the following dataset (⊥ is the missing value)

Feature  Feature  Feature  Label

 T C . 
 F A . 
 T B � �
 F A . 
 T C . �

• Make a context in the data preprocessing phase

.T .A .B .C . .
 × × ×
 × ×
 × ×
 × ×
 × × ×
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Make a Concept Lattice by FCA

• Make a concept lattice
from the context

2, 4

1.T

1.T, 2.A, 2.B, 2.C, 3.0, 3.1
∅

5 1 3

2, 4, 5 1, 5

1, 3, 5

1, 2, 3, 4, 5

1.T, 2.C3.1

1.T, 2.C, 3.0 1.T, 2.B1.T, 2.C, 3.12.A, 3.1

∅
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Learn Classification Rules

• Search the maximal cons-
istent concepts

2, 4

1.T

1.T, 2.A, 2.B, 2.C, 3.0, 3.1
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1.T, 2.C, 3.0 1.T, 2.B1.T, 2.C, 3.12.A, 3.1

∅ 1: 1
2: 1
3: ⊥
4: 2
5: ⊥

Labels
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Learn Classification Rules

• Search the maximal cons-
istent concepts
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Data Preprocessing
• Learning from the remaining data

Feature  Feature  Feature  Label
 F A . 
 F A . 

• Refine discretization, and obtain the following context

.T .A .B .C .00 .01 .10 .11
 × ×
 × ×

00 11

0.54 0.79

01 10
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Make a Concept Lattice by FCA

1.T, 2.A, 2.B, 2.C,
3.00, 3.01, 3.10, 3.11
∅

2 4

2, 4
2.A

2.A, 3.112.A, 3.10
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Learn Classification Rules

1.T, 2.A, 2.B, 2.C,
3.00, 3.01, 3.10, 3.11
∅

2 4

2, 4
2.A

2.A, 3.112.A, 3.10

2: 1
4: 2

Labels
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Classify Unlabeled Data

• We obtain classification rules for each discretization level:
ℛ = {ℛ1,ℛ2},

ℛ1 = {({.T}, 1)},
ℛ2 = {({.A, .10}, 1), ({.A, .11}, 2)}

– Eachℛi is a set of pairs (attributes of amaximal concept,
a class label)

• Classification of unlabeled (test) data
– Datum (T, B, 0.45) belongs to class  since the st vari-
able is T

– Datum (F, A, 0.84) belongs to class  since the nd vari-
able is A and the rd variable is in [0.75, 1]
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Methods

. SELF v.s. the decision tree-based method using mixed-
type datasets

. SELF v.s. other SSL methods using continuous datasets
• There is no SSL method for mixed-type datasets

• SELF is implemented in R ..
• To enumerate all concepts, we use LCM [Uno et al., ]
presented by Uno
– One of the fastest algorithm

• If  label candidates is more than two, we adopt themode
– If there is no label candidate, we adopt the mode of la-
bels of a training dataset
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Methods of Exp. 

• We used  mixed-type datasets from UCI repository
• To check effectivity of unlabeled data, we tested the fol-
lowing two cases
. Use labeled and unlabeled data for training
. Use only labeled data for training

• We used the decision tree-based method in R for control
• For reference, we used -NN using only continuous fea-
tures

• We used -fold cross validation
– One fold is labeled training data, another one fold is test data,
and the other  folds are unlabeled training data

– We fixed the number of labeled training data as ∼
• We compared the accuracy
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Datasets for Exp. 

Name  Data  Classes Bin. Nom. Real.
ad     
allbp     
anneal     
arrhythmia     
australian     
crx     
echoc     
heart     
hepatitis     
horse     
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Results for Exp. 
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Results for Exp. 
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Results for Exp. 
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Methods for Exp. 

• Use the benchmark datasets in [Chapelle et al., ]
• Check two cases like exp. 
. Use labeled and unlabeled data for training
. Use only labeled data for training

• Compared our results to those in [Chapelle et al., ]
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Datasets for Exp. 

Name  Data  Classes  features

g241c (D)   
g241d (D)   
Digit1 (D)   
USPS (D)   
COIL (D)   
BCI (D)   
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Results for Exp.  (with  labeled data)
D D D D D D

SELF(b) . . . . . .
SELF . . . . . .
-NN . . . . . .
SVM . . . . . .
MVU . . . . . .
LEM . . . . . .
QC . . . . . .
Disc.Reg. . . . . . .
TSVM . . . . . .
SGT . . . . NA .
C.Kernel . . . . . .
D.Reg. . . . . . .
LDS . . . . . .
RLS . . . . . .
CHM . . . . NA .
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Conclusion

• We have presented a semi-supervised learning (SSL)
method, SELF, for mixed-type data

• Contribution to the FCA:
– A novel application of FCA

• Contribution to the KDD:
– The first direct SSL method for mixed-type datasets

∘ An original dataset is lifted to the concept lattice using FCA
(Formal Concept Analysis)

∘ Classification rules are learned in the space
– Moreover, SELF can apply to incomplete datawithmiss-
ing values
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RelatedWork (in FCA)
• Many studies used FCA for machine learning and knowl-
edge discovery [Kuznetsov, ]
– Classification [Ganter and Kuznetsov, ; Ganter and
Kuznetsov, ]

– Clustering [Zhang et al., ]
– Association rule mining [Jaschke et al., ; Pasquier et al.,
; Valtchev et al., ]

– Bioinformatics [Blinova et al., ; Kaytoue et al., ;
Kuznetsov and Samokhin, ]

• Ganter and Kuznetsov attacked to the problem of binary
classification for real-valued data
– Their method discretizes real-valued variables by conceptual
scaling [Ganter and Wille, ], that are given a priori
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RelatedWork (in ML)

• Decision tree-based methods, e.g., C. [Quinlan, ;
Quinlan, ], can treat mixed-type data

• Discretization techniques [Fayyad and Irani, ; Liu et
al., ; Skubacz and Hollmén, ]
– Our approach is different from them since we integrate dis-
cretization process into learning process and avoid overfitting

• Kok and Domingos [Kok and Domingos, ] have pro-
posed a learning method via hypergraph lifting
– Construct clusters by hypergraphs and learns on them
– it is difficult to treat continuous variables in their approach

A-/A-



Time Complexity

• Data preprocessing takes O(nd)
– n is the number of objects
– d is the number of attributes

• Making concepts takes O(Δ3)
– Δ = max{#J ∣ J ⊆ I, g = h for all (g,m), (h, l) ∈ J, orm = l
for all (g,m), (h, l) ∈ J}

• Judging consistency of concepts takes less than O(Λ)
– Λ is the number of concepts at discretization level 1

• The time complexity of SELF is O(nd) + O(Δ3) + O(Λ)
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An Fatal Error Caused by Discretization

• Solve the system of linear equations [Schroder, ]
40157959.0 x + 67108865.0 y = 1

67108864.5 x + 112147127.0 y = 0
– Obtained by the well-known formula

x =
b1a22 − b2a12
a11a22 − a21a12

, y =
b2a11 − b1a21
a11a22 − a21a12

• By floating point arithmetic with double precision vari-
ables (IEEE ) :
x = 112147127, y = −67108864.5

• The correct solution:
x = 224294254, y = −134217729
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What is SSL?

• It is a special form of classification
• Goal: Using (large amount of ) unlabeled data effectively,
together with labeled data, build better classifiers [Zhu
and Goldberg, ]
– Transductive learning focuses on classification of unlabeled
data in the training data [Vapnik and Sterin, ]

– In contrast, in SSL we treat learning of classification rules and
classification of unseen data

• Usual assumption: There are only few labeled data
(∼) and lots of unlabeled data (∼)
– Labeling costs high in real situation

A-/A-



Data Preprocessing for Binary and
Nominal Variables

• Goal: Make a context from a given dataset to use FCA
– A context is a triple (G,M, I), G andM are sets and I ⊆ G × M

∘ Elements in G andM are objects and attributes, resp.
∘ gImmeans an object g has an attributem
∘ Represented by a cross-table

• Strategy: Convert each feature in the given dataset into a
context, and merge into one context
– First we make a context from discrete variables
– The process of making a context from continuous variables is
embedded into the learning process
∘ Increase discretization level alongwith the learning process
∘ We can avoid overfitting

A-/A-



Data Preprocessing Algorithm for
Binary and Nominal Variables

Input: Dataset X = [xij]n×q whose variables are binary or nominal
Output: Context (G,MBN, IBN)
function ContextBN(X)
: G ← {1, 2,… ,n}
: for each j ∈ {1, 2,… , d}
: if the feature j of X is binary and has no missing value then
: Mj ← {T}, Ij ← {(i, xij) ∣ i ∈ G and xij = T}
: else if the feature j of X is binary and has missing value then
: Mj ← {T, F}, Ij ← {(i, xij) ∣ i ∈ G and xij ≠ ⊥}
: else // the feature j is nominal
: Mj ← {1,… , vj}, Ij ← {(i, xij) ∣ i ∈ G and xij ≠ ⊥}
: combine (G,M1, I1), (G,M2, I2),… , (G,Md, Id) into (G,MBN, IBN)

: return (G,MBN, IBN)
A-/A-



Example of Data Preprocessing for
Discrete Variables
• Data preprocessing for the following dataset

Feature  Feature  Feature 

 T � C
 F F �

– Features  and  are binary, and the feature  is nominal
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Discrete Variables
• Data preprocessing for the following dataset
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– Features  and  are binary, and the feature  is nominal
• We obtain the context as follows:

.T .T .F .A .B .C

 ×
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Example of Data Preprocessing for
Discrete Variables
• Data preprocessing for the following dataset

Feature  Feature  Feature 

 T � C
 F F �

– Features  and  are binary, and the feature  is nominal
• We obtain the context as follows:

.T .T .F .A .B .C

 × ×
 ×
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Data Preprocessing Algorithm for
Real-Valued Variables

Input: Real-valued dataset X and discretization level k
Output: Context (G,MR, IR)
function ContextR(X, k)
: G ← {1, 2,… ,n}
: for each j ∈ {1, 2,… , d}
: Mj ← {1, 2,… ,βk}
: Normalize Xj by min-max normalization
: for each i ∈ {1, 2,… ,n}
: if xij = 0 then Ij ← Ij ∪ {(i, 1)}
: else if xij≠0 and xij≠⊥ then
: Ij ← Ij ∪ {(i,m)}, where xij ∈ ((m − 1)/βk,m/βk]
: combine (G,M1, I1), (G,M2, I2),… , (G,Md, Id) into (G,MR, IR)

: return (G,MR, IR)
A-/A-



Discretization by Binary Encoding
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Example of Data Preprocessing for
Real-Valued Variables
• Data preprocessing for the following dataset

Feature  Feature  Feature 
 T . .
 F . �

– Features  is binary, and feature  and  are real-valued
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Example of Data Preprocessing for
Real-Valued Variables
• Data preprocessing for the following dataset
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– Features  is binary, and feature  and  are real-valued
• At discretization level , we obtain the context as follows:

.T .0 .1 .0 .1
 ×
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Example of Data Preprocessing for
Real-Valued Variables
• Data preprocessing for the following dataset

Feature  Feature  Feature 
 T . .
 F . �

– Features  is binary, and feature  and  are real-valued
• At discretization level , we obtain the context as follows:

0.35 0.78 0.813

0 1
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Example of Data Preprocessing for
Real-Valued Variables
• Data preprocessing for the following dataset

Feature  Feature  Feature 
 T . .
 F . �

– Features  is binary, and feature  and  are real-valued
• At discretization level , we obtain the context as follows:

.T .0 .1 .0 .1
 × ×
 ×
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Example of Data Preprocessing for
Real-Valued Variables
• Data preprocessing for the following dataset

Feature  Feature  Feature 
 T . .
 F . �

– Features  is binary, and feature  and  are real-valued
• At discretization level , we obtain the context as follows:

.T .0 .1 .0 .1
 × × ×
 ×
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Formal Concept Analysis (FCA)

• Generate a concept lattice using the algebraic “closed”
property

• For A ⊆ G and B ⊆ M of a context (G,M, I),
A = {m ∈ M ∣ (∀g ∈ A) gIm}, B = {g ∈ G ∣ (∀m ∈ B) gIm}

• A concept of a (G,M, I) is a pair (A, B) (A ⊆ G, B ⊆ M) such
that A = B and B = A
– A is an extent and B is an interior, A is extent ⟺ A = A’
– ℬ(G,M, I) is the set of concept

• For concepts (A1, B1), (A2, B2), A1 ⊆ A2 ⇒ (A1, B1) ≤ (A2, B2)
(A1, B1) ≤ (A2, B2) ⟺ A1 ⊆ A1 ⟺ B1 ⊇ B2

• ≤ is an order of ℬ(G,M, I), ⟨ℬ(G,M, I),≤⟩ is a complete lat-
tice

A-/A-



– The concept lattice of a context (G,M, I)

A-/A-



Example of FCA

• Given the following context

A B C D E

 × × ×
 × × ×
 ×
 × ×

• There are  concepts as follows:
– (∅, {A, B, C, D, E}), ({1}, {A, B, D}), ({2}, {B, D, E}),
({3}, {C}), ({1, 2}, {B, D}), ({2, 4}, {B, E}), ({1, 2, 4}, {B}),
({1, 2, 3, 4}, ∅).

• The concept lattice is constructed from these concepts
A-/A-



Example of FCA
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XY denotes the set {X, Y}
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Learning Classification Rules

• Idea: If the label of an object in a concept is c, those of the
other objects in the same concept are also c

• Basic strategy: Search the concept lattice from the top
concept, and find maximal and consistent concepts
– The attribute B of such a concept (A, B) is a rule

∘ A is a dataset classified to the class by the rule B
– Each concept can be viewed as a base cluster

• For each object g ∈ G, g’s label is denoted by γ(g)
– Γ(G) ≔ {g ∈ G ∣ γ(g) ≠ ⊥}

∘ γ(g) = ⊥ ⟺ g is unlabeled data

• For a concept (A, B), if Γ(A) ≠ ∅ and γ(g) = γ(h) for all g,h ∈ Γ(A),
then (A, B) is consistent

A-/A-



The SELF Algorithm (/)

Input: Dataset Xwith n objects and d attributes
Output: A set of classification rules ℛ
function Main(X)
: Divide X into two datasets XBN and XR, where XBN contains

all binary and nominal variables in X, and XR contains all
real-valued variables in X

: (G,MBN, IBN) ← ContextBN(XBN)
// make a context from binary and nominal variables of X

: k ← 1 // k is level of discretization
: ℛ ← Learning(XR,G,MBN, IBN, k,∅)

// use this function recursively
: return ℛ

A-/A-



The SELF Algorithm (/)

function Learning(XR,G,MBN, IBN, k,ℛ)
: (G,MR, IR) ← ContextR(XR, k)

// make a context from real-valued variables of X at level k
: make (G,M, I) from (G,MBN, IBN) and (G,MR, IR)
: build the concept lattice 𝔅(G,M, I) from (G,M, I)
: 𝒞 ← {(A, B) ∈ 𝔅(G,M, I) ∣ (A, B) is consistent}
: ℛk ← {(B, γ(a)) ∣ (A, B) ∈ Max𝒞 and a ∈ Γ(A)}
: ℛ ← ℛ ∪ (ℛk, k) // add the current result ℛk
: G ← G ⧵ {g ∣ g ∈ A for some (A, B) ∈ 𝒞}
: remove corresponding attributes and relations fromMBN

and IBN, respectively
: remove corresponding objects from XR

: if Γ(G) = ∅ then return ℛ
: else return Learning(XR,G,MBN, IBN, k + 1,ℛ)
: end if
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Classify unlabeled data

• Assume we obtain the rules ℛ = {ℛ1,… ,ℛk} by SELF
• To classify a test datum, check rules from ℛ1 to ℛk

• For each level k,
. Make a context (G,M, I) by data preprocessing
. Enumerate all l such that B ⊆ M for (B, l) ∈ ℛk

• We obtain label candidates L = {l1,… , lc} and sometimes
cannot decide an unique label
– All one-against-all classificationmethodshave the same
problem
∘ One of future works
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Classification Algorithm

Input: Classification rules ℛ = {ℛ1,ℛ2,… ,ℛK} and x = [xij]1×d
Output: Label candidates L = {l1, l2,… , lC}
function Classify(R, x)
: L ← ∅
: divide x into two data xBN and xR, where xBN contains all

binary and nominal variables, xR contains all real-valued
variables

: (G,MBN, IBN) ← ContextBN(xBN)
// make a context from binary and nominal variables of x

: for each k ∈ {1, 2,… , K}
: (G,MR, IR) ← ContextR(xR, k)

// make a context from real-valued variables of x at level k
: make the context (G,M, I) from (G,MBN, IBN) and (G,MR, IR)
: add l to L if R ∈ M for some (R, l) ∈ ℛk
: end for; return L
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