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Summary

- We propose a semi-supervised learning (SSL) method,
called (SEmi-supervised Learning via FCA), using
(FCA)

— It can handle mixed-type data containing both discrete

and continuous variables
o Numerical data are by binary encoding
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Summary

- We propose a semi-supervised learning (SSL) method,
called (SEmi-supervised Learning via FCA), using
(FCA)

— It can handle mixed-type data containing both discrete
and continuous variables

o Numerical data are by binary encoding
- Main contributions
1. The for mixed-type data

— FCAis shown to be a powerful tool for machine learn-
ing and knowledge discovery

2. Can handle
— missing values and missing labels
3. Achieve of classification experimentally
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Problems in Knowledge Discovery

- We need to treat more and more massive datasets in KDD

- Problems:
1. Many datasets are . consist of both discrete
and continuous variables

2. Many datasets are : contain NULL values
- A : Some value of a datum is missing

- A : Class label of a datum is missing

4/31



Example: The Horse-Colic Dataset in
UCI Repository
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Mixed-Type Datasets

- Lots of with discrete and continuous vari-
ables are available for KDD
- e.g. traffic data for intrusion detection, biochemical data, ...
— Discrete variable: binary (T, F), nominal (A, B, ..., V)
o e.g., sex, buying history, questionnaire results, ...

— Continuous variable: real-valued (R)
o Mainly obtained by measurement or observation

— cf. scales of measure (nominal, ordinal, interval, ratio)

- Only few machine learning and KDD methods can directly
handle mixed-type data

— e.g. Decision tree-based methods such as C4.5
- Modern efficient and effective KDD method is needed
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Incomplete Datasets

- How to treat incomplete datasets with NULL (L) valuesis
important problem in KDD

— There are various types of NULL
- We consider the following two types of NULL

- A : Some value of a datum is missing
- A : Class label of a datum is missing
- Treat

- e.g. If areal number m = 3.1415 ... is discretized to 3.1, the
subsequent bits become unknown

— This error is not treated in most methods in (statistical) ma-
chine learning and KDD, but there always exist
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Problems in Knowledge Discovery

- We need to treat more and more massive datasets in KDD

- Problems:
1. Many datasets are . consist of both discrete
and continuous variables

2. Many datasets are : contain NULL values
- A : Some value of a datum is missing

- A : Class label of a datum is missing
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Problems in Knowledge Discovery

- We need to treat more and more massive datasets in KDD

- Problems:

1. Many datasets are . consist of both discrete
and continuous variables

2. Many datasets are : contain NULL values
- A : Some value of a datum is missing
- A : Class label of a datum is missing

3. task costs high (money, time, ...)
— We need class labels to obtain classification rules
- Yet we have lots of unlabeled data to be analyzed

— The concept of arose in ma-
chine learning and KDD
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Semi-Supervised Learning

- Itis a special form of

- Goal: Using (large amount of) unlabeled data effectively,
together with (only few) labeled data, build better classi-
fiers [Zhu and Goldberg, 2009]
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Problems in SSL

- Itis a special form of

- Goal: Using (large amount of) unlabeled data effectively,
together with (only few) labeled data, build better classi-
fiers [Zhu and Goldberg, 2009]

- However, to date, no SSL method can treat mixed-type
datasets directly
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Problems in SSL and Our Solution

- Itis a special form of

- Goal: Using (large amount of) unlabeled data effectively,
together with (only few) labeled data, build better classi-
fiers [Zhu and Goldberg, 2009]

- However, to date, no SSL method can treat mixed-type
datasets directly

- We solve this problem by using

- We present a new SSL method, called , for incom-
plete mixed-type datasets
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Flowchart of SELF
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Learning by SELF

- Learning from the following dataset (L is the missing value)

Feature 1  Feature 2 Feature 3
1 T C 0.28 g
2 F A 0.54 g
3 T B X X
4 F A 0.79 2
5 T C 0.81 X
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Data Preprocessing (1/3)

- Learning from the following dataset (L is the missing value)

Feature1 Feature 2 Feature 3
g T C 0.28 g
2 F A 0.54 g
3 T B X X
4 F A 0.79 2
5 T C 0.81 X

- Make a context in the data preprocessing phase

1.T | 2A 2B 2.C
1 X X
2 X
3 X X
4 X
5 X X
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Data Preprocessing (2/3)

- Learning from the following dataset (L is the missing value)

Feature1 Feature 2 Feature 3
g T C 0.28 g
2 F A 0.54 g
3 T B X X
4 F A 0.79 2
5 T C 0.81 X

the continuous feature (F3) using binary encoding

0 1

0.28 0.54 0.79 0.81
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Data Preprocessing (3/3)

- Learning from the following dataset (L is the missing value)

Feature1  Feature2 Feature 3
1 T C 0.28 1
2 F A 0.54 1
3 T B X X
4 F A 0.79 2
5 T C 0.81 X

- Make a context in the data preprocessing phase
1.T | 2A 2B 2.C | 3.1 3.2

1 X X X

2 X X

3 X X

4 X X

5 X X X
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Make a Concept Lattice by FCA

- Make a concept lattice
from the context <

1.T, 2.A, 2.B, 2.C, 3.0, 3.1
%)
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Learn Classification Rules

- Search the maximal cons-

. % Labels 1:1
istent concepts 1234580 \ 201
3.1
4: 2
5:1
2 4
2A 3.1 1.T, 2.B
3 4 3

1.T, 2.A, 2.B, 2.C, 3.0, 3.1
%)
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Learn Classification Rules

- Search the maximal cons-

: D
Istent concepts 1.2.3,4,5 0O

1.T, 2.A, 2.B, 2.C, 3.0, 3.1
D
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Data Preprocessing

- Learning from the remaining data

Feature1 Feature2 Feature 3
2 F A 0.54 g
4 F A 0.79 2

discretization, and obtain the following context

1.T | 2A 2B 2.C | 3.00 3.01 3.10 3.11
2 X X
4 X X
00 01 10 11
0.54 0.79
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Make a Concept Lattice by FCA

1.T, 2.A, 2.B, 2.C,
0 3.00,3.01,3.10,3.11

%)
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Learn Classification Rules

2.A Labels 2:1
4.2

1T 2.A,2.B,2.C,
3.00,3.01,3.10,3.11
%)
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Classify Unlabeled Data

- We obtain classification rules for each discretization level:

R = { R, F3 1},
K ={({1.T} N},
%, = (| b1, 1,2))
— Each &£, is a set of pairs (attributes of a maximal concept,
a class label)

- Classification of unlabeled (test) data

- Datum (T, B, 0.45) belongs to since the 1st vari-
ableisT
— Datum (F, A, 0.84) belongs to since the 2nd vari-

able is A and the 3rd variable is in [0.75, 1]
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Methods

1. SELF v.s. the decision tree-based method using mixed-
type datasets

2. SELF v.s. other SSL methods using continuous datasets
- There is no SSL method for mixed-type datasets

- SELF isimplemented in R 2.10.1

- To enumerate all concepts, we use LCM [Uno et al., 2005]
presented by Uno

— One of the fastest algorithm

- If # label candidates is more than two, we adopt the mode

— If there is no label candidate, we adopt the mode of la-
bels of a training dataset
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Methods of Exp. 1

- We used 10 mixed-type datasets from UCI repository

- To check effectivity of unlabeled data, we tested the fol-
lowing two cases
1. Use labeled and unlabeled data for training

2. Use only labeled data for training
- We used the decision tree-based method in R for control

- For reference, we used 1-NN using only continuous fea-
tures

- We used 10-fold cross validation

- Onefold is labeled training data, another one fold is test data,
and the other 8 folds are unlabeled training data

- We fixed the number of labeled training data as 10~100

- We compared the
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Datasets for Exp. 1

Name # Data # Classes | Bin. Nom. Real.
ad 3729 2 7 0 3
allbp 2800 3 2 o) 3
anneal 798 5 0 26 6
arrhythmia 452 16 5 0 5
australian 690 2 4 4 6
Crx 690 2 4 5 6
echoc 131 2 1 0 8
heart 270 2 3 4 6
hepatitis 155 2 13 0 6
horse 200 2 2 5 3
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Results for Exp. 1

ad allbp
96 -
86 -
34 94 -
£ 82 & 92
Z %
& 70{ % - 3 90
> ) SN . >
O 78 Xx ! xx xX g 88 1
< 0 ¥ X <
761 A 0 86 -
\ ,ﬂ aos
74| o O EHHEO o
O 20 40 60 80 100 O 20 40 60 80 100
The number of labeled data The number of labeled data
—O— SELF(b) --»-- Tree —{7J-- 1-NN
-<{>- SELF
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Results for Exp. 1

anneal arrhythmia
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Results for Exp. 1
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Results for Exp. 1

echoc heart
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Results for Exp. 1

hepatitis horse
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Methods for Exp. 2

- Use the benchmark datasets in [Chapelle et al., 2006]

- Check two cases like exp. 1
1. Use labeled and unlabeled data for training
2. Use only labeled data for training

- Compared our results to those in [Chapelle et al., 2006]
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Datasets for Exp. 2

Name # Data # Classes # features
g241c (D1) 1500 2 241
g241d (D2) 1500 2 241
Digitl (D3) 1500 2 241
USPS (D4) 1500 2 241
COIL (Ds) 1500 6 241
BCI (D6) 400 2 117
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Results for Exp. 2 (with 10 labeled data)

D1 D2 D3 D4 Ds D6

SELF(b) 52.33 52.41 5836 75.12 39.91

SELF 50.55 51.27 53.03 75.04 23.42 50.44
1-NN 55.95 56.78 76.53 80.18 34.09 51.26
SVM 52,68 53.34 69.40 79.97 31.64 50.15
MVU 51.32 52.72 88.08 85.12 34.28 49.76
LEM 52.53 54.66 87.96 80.86 32.04 50.06
QC 60.04 53.45 90.20 40.37 49.64
Disc.Reg. 50.41 50.95 87.36 83.93 36.62 50.49
TSVM 75.20 49.92 82.23 74.80 32.50 50.85
SGT 01.08 74.64 NA 50.41
C.Kernel 51.72 57.95 81.27 80.59 32.68 51.69
D.Req. 58.75 54.11 87.51 82.04 36.35 49.79
LDS 71.15 49.37 84.37 82.43 38.10 50.73
RLS 56.05 54.32 81.01 51.03
CHM 60.97 56.99 85.14 79.47 NA 53.10
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Results for Exp. 2 (with 100 labeled data)

D1 D2 D3 D4 Ds D6

SELF(b) 67.01 67.03 72.62 83.19 70.18

SELF 54.37 53.87 59.98 77.44 46.09 64.56
1-NN 509.72 62.51 93.88 9236 76.73 55.17
SVM 76.80 75.36 94.47 90.25 77.07 65.69
MVU 55.905 56.79 06.01 93.91 67.73 52.58
LEM 57.86 60.57 97.48 93.91 63.51 51.36
QC 77.95 7180 96.85 093.64 89.97 53.78
Disc.Reg. 56.35 58.35 97.23 52.33
TSVM 81.54 77.58 03.85 090.23 74.20 66.75
SGT 82.50 90.89 07.39 03.20 NA 54.97
C.Kernel 06.21 90.32 78.01 64.83
D.Req. 79.69 67.18 04.900 88.54 52.53
LDS 81.96 76.26 06.54 95.04 86.28 56.03
RLS 75.64 73.54 97.08 88.08 68.64
CHM 75.18 74.33 96.21 92.35 NA 63.97
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Conclusion

- We have presented a semi-supervised learning (SSL)
method, , for mixed-type data

- Contribution to the FCA:
— A novel application of FCA

- Contribution to the KDD:

— The first direct SSL method for mixed-type datasets

o An original dataset is to the concept lattice using
(Formal Concept Analysis)

o Classification rules are learned in the space

— Moreover, SELF can apply to incomplete data with miss-
ing values
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Related Work (in FCA)

- Many studies used FCA for machine learning and knowl-
edge discovery [Kuznetsov, 2004l

— Classification [Ganter and Kuznetsov, 2000; Ganter and
Kuznetsov, 2003]

— Clustering [Zhang et al., 2008]

— Association rule mining [aschke et al., 2006; Pasquier et al.,
1999; Valtchev et al., 2004]

— Bioinformatics [Blinova et al., 2003; Kaytoue et al., 2010;
Kuznetsov and Samokhin, 2005]

- Ganter and Kuznetsov attacked to the problem of binary
classification for real-valued data
— Their method discretizes real-valued variables by conceptual
scaling [Ganter and Wille, 1998], that are given a priori
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Related Work (in ML)

- Decision tree-based methods, e.g., [Quinlan, 1993;
Quinlan, 1996], can treat mixed-type data

- Discretization techniques [Fayyad and Irani, 1993; Liu et

al., 2002; Skubacz and Hollmén, 2000l

— Our approach is different from them since we integrate dis-
cretization process into learning process and avoid overfitting

- Kok and Domingos [Kok and Domingos, 2009] have pro-
posed a learning method via hypergraph lifting

— Construct clusters by hypergraphs and learns on them
— it is difficult to treat continuous variables in their approach
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Time Complexity

- Data preprocessing takes O(nd)
- nis the number of objects
— dis the number of attributes

- Making concepts takes O(A3)

- A=max{#J|JC I, g=hforall (g m),(h)eorm=]I
forall (g,m), (h,]) € J}

- Judging consistency of concepts takes less than O(A)
— Nis the number of concepts at discretization level 1

- The time complexity of SELF is
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An Fatal Error Caused by Discretization

- Solve the system of linear equations [Schroder, 03]
40157959.0x+ 67108865.0y = 1

67108864.5x+ 1121471270y =0
— Obtained by the well-known formula
_ biay —byay, _ byay —byay,
d110y; — d21072’ d110d33 — dz1013

- By floating point arithmetic with double precision vari-
ables (IEEE 754) :

x=112147127, y =—-67108864.5

- The correct solution:
X = 224294254, y=—-134217729
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What is SSL?

- Itis a special form of classification

- Goal: Using (large amount of) unlabeled data effectively,
together with labeled data, build better classifiers [Zhu
and Goldberg, 2009]

- focuses on classification of unlabeled
data in the training data [Vapnik and Sterin, 19771

- In contrast, in SSL we treat learning of classification rules and
classification of unseen data

- Usual assumption: There are only few labeled data
(10~100) and lots of unlabeled data (~1000)

— Labeling costs high in real situation

A-6/A-26



Data Preprocessing for Binary and
Nominal Variables

- Goal: Make a from a given dataset to use
- A is atriple (G,M,l), Gand Maresetsand I C G XM
o Elementsin Gand M are and , resp.

o glm means an object g has an attribute m
o Represented by a cross-table

- Strategy: Convert each feature in the given dataset into a
context, and merge into one context
— First we make a context from discrete variables

— The process of making a context from continuous variables is
embedded into the learning process

o Increase discretization level along with the learning process
o We can avoid overfitting
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Data Preprocessing Algorithm for
Binary and Nominal Variables

Input: Dataset X = [x;],,,, whose variables are binary or nominal
Output: Context (G, Mgy, Ign)

function ContextBN(X)
1. G« {1,2,...,n}
foreachj e {1,2,...,d}
if the feature j of X'is binary and has no missing value then
M, < {T}, [, < {(ix;) | i€ Gand x; =T}
else if the featurej ofX is binary and has missing value then
M; < {T,F}, [, < {(i,x;) | i € Gand x; # L}
else // the featurej is nomlnal
M, < {1,...,v;}, [ < {{ix;) |leGandx * 1}
combine (G, /\/11,I ), (G M., |, ) (G, My ) |nto (G, Mgy, lgn)
return (G, Mgy, lzn)

QY NV A WN

-
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Example of Data Preprocessing for
Discrete Variables

- Data preprocessing for the following dataset

Feature1 Feature2 Feature 3

1 T X C
2 F F X
— Features 1 and 2 are ,and the feature 3 is
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- We obtain the context as follows:

1.T
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Example of Data Preprocessing for
Discrete Variables

- Data preprocessing for the following dataset

Feature1 Feature2 Feature 3

1 T X C
2 F F X
— Features 1 and 2 are ,and the feature 3 is

- We obtain the context as follows:

1.T | 2.T 2.F
1 X

X
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Example of Data Preprocessing for

Discrete Variables

- Data preprocessing for the following dataset

Feature 1 Feature 2 Feature 3
1 T X C
2 F X

— Features 1 and 2 are

,and the feature 3 is

- We obtain the context as follows:

1.T

2. T

2.F

3.A° 3.B 3.C

1 X

X

X
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Data Preprocessing Algorithm for
Real-Valued Variables

Input: Real-valued dataset X and discretization level k
Output: Context (G, Mg, I;)

function ContextR(X, k)
1. G« {1,2,...,n}
foreachje {1,2,...,d}
M < {1,2, ...,Bk}
Normalize X; by min-max normalization
foreachie {1,2,...,n}
ifx; =0then « ;U {(i,1)}
else if x;#0 and x;#L then

I<—IU{lm}wherexe m —1)/8%, m/B]
comblne (G,M,, 1,),(G, /\/Iz,l ), ... (G,M,, 1) into (G, Mg, I)
return (G, Mg, I,)

LY ® NIV RARWN

-
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Discretization by Binary Encoding

coo o001 010 011 100 101 110 111

Discretization level

00 01 10 11
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Example of Data Preprocessing for
Real-Valued Variables

- Data preprocessing for the following dataset

Feature1 Feature2 Feature 3

g T 0.35 0.78
2 F 0.813 X
— Features 1 is ,and feature 2 and 3 are
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Example of Data Preprocessing for
Real-Valued Variables

- Data preprocessing for the following dataset

Feature1 Feature2 Feature 3

g T 0.35 0.78
2 F 0.813 X
— Features 1 is ,and feature 2 and 3 are

- At discretization level 1, we obtain the context as follows:

1.T
1 X
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Formal Concept Analysis (FCA)

- Generate a concept lattice using the algebraic
property
- For A C Gand B C M of a context (G, M, /),
Al={meM|(VgeAglm}, B ={geG|(Vm e B)gim)

- A of a (G,M, ) is a pair (A,B) (A C G, B C M) such
that A’ =Band B = A
— Aisan and B is an JAisextent < A=A’

- AB(G,M, ) is the set of concept
- For concepts (A, B¢), (A5, B,), A CA, = (A,B;) £ (A,,B5)
(A,B;) <(A,,B)) <= A, CA, < B, 285,
- <isan order of B(G,M, ), (AB(G,M,I),<) is a complete lat-
tice
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— The of a context (G, M, ])
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Example of FCA

- Given the following context

A B C D E
1 | x X X
2 X X X
3 X
4 X X

- There are 8 concepts as follows:

- (@, {A, B, C, D, E}), ({1}, {A B, D}), ({2}, {B, D, E}),
({3}, {C}), ({1,2},{B,D}), ({2,4}, {B,E}), ({1,2,4}, {B}),
({1,2,3,4}, Q).

- The concept lattice is constructed from these concepts
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Example of FCA

%)
< 1234

XY denotes the set {X, Y}
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Learning Classification Rules

- ldea: If the label of an object in a concept s ¢, those of the
other objects in the same concept are also ¢

- Basic strategy: Search the concept lattice from the top
concept, and find maximal and concepts
— The attribute B of such a concept (A,B) is a
o Ais a dataset classified to the class by the rule B

— Each concept can be viewed as a

- For each object g € G, g’s label is denoted by y(g)

- MG =1{ge G|y # 1]
o y(g) = L < gisunlabeled data

- For a concept (A, B), if T(A) # @ and y(g) = y(h) forall g, h € T(A),
then (A, B) is
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The SELF Algorithm (1/2)

Input: Dataset X with n objects and d attributes
Output: A set of classification rules &

function Main(X)

1.

w

Divide X into two datasets Xg, and X;, where Xz, contains
all binary and nominal variables in X, and X;; contains all
real-valued variables in X

(G, Mgy, Igy) < ContextBN(Xgy)

// make a context from binary and nominal variables of X
k — 1 //kislevel of discretization

R «— Learning(Xg, G, Mgy, lgn, kK, @)

// use this function recursively

return &£
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The SELF Algorithm (2/2)

function Learning(Xz, G, Mgy, lgn, ki %)

1.

XNV ARWN

11
128

(G, Mg, I) < ContextR(Xg, k)

// make a context from real-valued variables of X at level k
make (G, M, l) from (G, Mgy, Izy) and (G, Mg, Iz)

build the concept lattice B(G, M, |) from (G, M, |)

€ «— {(A B) € B(G,M,I) | (A B)is consistent}

R, — {(B,yla)) | (A,B) € Max€ and a € T(A)}

R — RU(R,, k) [//addthe current result £,
G<G\{g|geAforsome (A B) € ¢}

remove corresponding attributes and relations from Mg,
and g, respectively

remove corresponding objects from X

if I(G) = @ then return £

else return Learning(Xg, G, Mgy, lgn K+ 1, X)

end if
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Classify unlabeled data

- Assume we obtain the rules £ = {#,, ..., £, } by SELF
- To classify a test datum, check rules from &£, to %,

- For each level k,
1. Make a context (G, M, /) by data preprocessing
2. Enumerate all / such that B C Mfor (B,]) € £,

- We obtain label candidates L = {/;,...,/.} and sometimes
cannot decide an unique label

- All one-against-all classification methods have the same
problem

o One of future works
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Classification Algorithm

Input: Classification rules # = {2, R,, ..., ¢} and x = [x;];.4
Output: Label candidates L = {/,,1,, ..., I}

function Classify(R, x)

1.
2.

(9|

o N

L@
divide x into two data xgy and xz, where Xz contains all
binary and nominal variables, x; contains all real-valued
variables
(G, Mgy, Igy) < ContextBN(xgy)
// make a context from binary and nominal variables of x
foreachk € {1,2,...,K}
(G, Mg, I) < ContextR(xg, k)
// make a context from real-valued variables of x at level k
make the context (G, M, I) from (G, Mgy, Igy) and (G, Mg, I)
add /to Lif R € Mforsome (R, ]) € &,

end for; return L
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