Tensor Balancing on Statistical Manifold

Mahito Sugiyama1,2 Hiroyuki Nakahara3 Koji Tsuda4,5,6

1NII, 2JST PRESTO, 3RIKEN BSI, 4UTokyo, 5RIKEN AIP, 6NIMS
Results

- **Balancing** of higher order (more than two) tensors is firstly (theoretically) achieved
 - We present a balancing algorithm and prove its global convergence

- A fast balancing algorithm with **quadratic convergence** using Newton’s method
 - An existing algorithm is linear convergence

- **[Theory]** We provide dually flat Riemannian manifold of probability distributions with the structured outcome space
 - Information Geometry
 - Tensor balancing is an instance
Matrix Balancing

\[
\begin{bmatrix}
\rho_{11} & \rho_{12} & \rho_{13} & \rho_{14} \\
\rho_{21} & \rho_{22} & \rho_{23} & \rho_{24} \\
\rho_{31} & \rho_{32} & \rho_{33} & \rho_{34} \\
\rho_{41} & \rho_{42} & \rho_{43} & \rho_{44}
\end{bmatrix}
\]
Matrix Balancing

Find \(r \) and \(a \)

\[
\begin{bmatrix}
 p_{11} & p_{12} & p_{13} & p_{14} \\
 p_{21} & p_{22} & p_{23} & p_{24} \\
 p_{31} & p_{32} & p_{33} & p_{34} \\
 p_{41} & p_{42} & p_{43} & p_{44}
\end{bmatrix}
\begin{bmatrix}
 r_1 \\
 r_2 \\
 r_3 \\
 r_4
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 a_4
\end{bmatrix}
\]

\[
r_2a_1p_{21} + r_2a_2p_{22} + r_2a_3p_{23} + r_2a_4p_{24} = 1
\]

\[
r_1a_3p_{13} + r_2a_3p_{23} + r_3a_3p_{33} + r_4a_3p_{43} = 1
\]
Matrix Balancing

- Problem setting:
 Given a nonnegative matrix \(P = (p_{ij}) \in \mathbb{R}^{n \times n}_+ \), find \(r, s \in \mathbb{R}^n \) s.t.

\[
(RPS) \mathbf{1} = \mathbf{1} \quad \text{and} \quad (RPS)^T \mathbf{1} = \mathbf{1}
\]

- \(R = \text{diag}(r) \), \(S = \text{diag}(s) \)
- Each entry is given as \(p'_{ij} = p_{ij} r_i s_j \)

- A fundamental process to analyze and compare matrices in a wide range of applications
 - Input-output analysis in economics, seat assignments in elections, Hi-C data analysis, Sudoku puzzle
 - Approximate Wasserstein distance
Results on Hessenberg Matrix

<table>
<thead>
<tr>
<th>n</th>
<th>Number of iterations</th>
<th>Running time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10^{10}</td>
<td>10^{8}</td>
</tr>
<tr>
<td>50</td>
<td>10^{10}</td>
<td>10^{6}</td>
</tr>
<tr>
<td>500</td>
<td>10^{10}</td>
<td>10^{4}</td>
</tr>
<tr>
<td>5000</td>
<td>10^{10}</td>
<td>10^{4}</td>
</tr>
</tbody>
</table>

- **Newton (proposed)**
- **Sinkhorn**
- **BNEWT**
Overview of Our Approach

Given tensor P

Multistochastic tensor P'

Tensor balancing

Every fiber sums to 1

Statistical manifold S (dually flat Riemannian manifold)

Probability distribution P

Projection

Submanifold $S(\beta)$

Projected distribution P_β
Partially Ordered Set

- Partially ordered set (poset) \((S, \leq)\)

 (i) \(x \leq x\) (reflexivity)

 (ii) \(x \leq y, y \leq x \Rightarrow x = y\) (antisymmetry)

 (iii) \(x \leq y, y \leq z \Rightarrow x \leq z\) (transitivity)

 - We assume that \(S\) is finite and includes the least element (bottom) \(\bot \in S\)

- Equivalent to a DAG

 - Each \(x \in S\) is a node

 - \(x \leq y \iff y\) is reachable from \(x\)
Log-Linear Model on Poset

Each \(x \in S \) has a triple:
\((p(x), \theta(x), \eta(x))\)

- A probability vector \(p: S \to (0, 1) \)
 s.t. \(\sum_{x \in S} p(x) = 1 \)
 - (Normalized) weight for each node

- We introduce \(\theta: S \to \mathbb{R} \) and \(\eta: S \to \mathbb{R} \) as
 \[
 \log p(x) = \sum_{s \leq x} \theta(s),
 \]
 \[
 \eta(x) = \sum_{s \geq x} p(s)
 \]
Our Model Includes Binary Case

- Our model:
 \[
 \log p(x) = \sum_{s \leq x} \theta(s), \quad \eta(x) = \sum_{s \geq x} p(s)
 \]
 is generalization of the log-linear model on binary vectors with \(x \in \{0, 1\}^n = S \):

 \[
 \log p(x) = \sum_i \theta^i x^i + \sum_{i < j} \theta^{ij} x^i x^j + \ldots
 \]
 \[
 + \theta^{1\ldots n} x^1 x^2 \ldots x^n - \psi,
 \]

 \[
 \eta^i = \mathbb{E}[x^i] = \Pr(x^i = 1),
 \]

 \[
 \eta^{ij} = \mathbb{E}[x^i x^j] = \Pr(x^i = x^j = 1),
 \]

 \frac{8}{19}
Dually Flat Structure

• \(\theta \) and \(\eta \) form a dual coordinate system:

\[
\nabla \psi(\theta) = \eta, \quad \nabla \varphi(\eta) = \theta
\]

- \(\psi(\theta) = -\theta(\perp) = -\log p(\perp), \quad \varphi(\eta) = \sum_{x \in S} p(x) \log p(x) \)

- \(\psi(\theta) \) and \(\varphi(\eta) \) are connected via the Legendre transformation:

\[
\varphi(\eta) = \max_{\theta'} \left(\theta' \eta - \psi(\theta') \right), \quad \theta' \eta = \sum_{x \in S \setminus \{\perp\}} \theta'(x) \eta(x)
\]

 ○ \(\psi(\theta) \) and \(\varphi(\eta) \) should be convex
Gradient and Riemannian Manifold

- The gradients: \(g(\theta) = \nabla \nabla \psi(\theta) = \nabla \eta, \ g(\eta) = \nabla \nabla \varphi(\eta) = \nabla \theta \)

\[
\begin{align*}
g_{xy}(\theta) &= \frac{\partial \eta(x)}{\partial \theta(y)} = \sum_{s \in S} \zeta(x, s) \zeta(y, s) p(s) - \eta(x) \eta(y) \\
g_{xy}(\eta) &= \frac{\partial \theta(x)}{\partial \eta(y)} = \sum_{s \in S} \mu(s, x) \mu(s, y) p(s)^{-1}
\end{align*}
\]

- \(\zeta \) and \(\mu \) are the zeta function and the Möbius function determined by the partial order (DAG) structure
- The manifold \((\mathcal{S}, g(\xi))\) is a Riemannian manifold with the set \(\mathcal{S} \) of probability vectors and the Riemannian metric \(g(\xi) \)
Möbius Function on Poset

- **Zeta function** $\zeta: S \times S \to \{0, 1\}$

 \[
 \zeta(s, x) = \begin{cases}
 1 & \text{if } s \leq x, \\
 0 & \text{otherwise.}
 \end{cases}
 \]

- **Möbius function** $\mu: S \times S \to \mathbb{Z}$

 \[
 \mu(x, y) = \begin{cases}
 1 & \text{if } x = y, \\
 - \sum_{x \leq s \leq y} \mu(x, s) & \text{if } x < y, \\
 0 & \text{otherwise}
 \end{cases}
 \]

- We have $\zeta \mu = I$ (convolutional inverse):

 \[
 \sum_{s \in S} \zeta(s, y) \mu(x, s) = \sum_{x \leq s \leq y} \mu(x, s) = \delta_{xy}
 \]
e-Projection and m-Projection

e-projection:

$\theta(x) = \alpha(x)$

m-projection:

$\eta(x) = \beta(x)$

$\forall x \in B = S^+ / A$
e-Projection and \(m \)-Projection

\[\theta(x) = 0 \]

\[\eta(x) = \eta(x) \]

\[
\text{MLE}
\]

Boltzmann machine

\[e \text{-projection} \]

\[m \text{-projection} \]

\[\hat{P} \]

\[R \]

\[\text{Boltzmann machine} \]

\[000 \]

\[001010100 \]

\[011101110 \]

\[111 \]

\[^\hat{\text{ }} \]

\[^\hat{\text{ }} \]
Compute e-Projection by Newton’s Method

- Each step of Newton’s method:
 \[
 \begin{bmatrix}
 \eta^{(t)}_{P_{\beta}}(x) - \beta(x) \\
 \vdots \\
 \eta^{(t)}_{P_{\beta}}(x) - \beta(x)
 \end{bmatrix}
 + J
 \begin{bmatrix}
 \theta^{(t+1)}_{P_{\beta}}(y) - \theta^{(t)}_{P_{\beta}}(y) \\
 \vdots \\
 \theta^{(t+1)}_{P_{\beta}}(y) - \theta^{(t)}_{P_{\beta}}(y)
 \end{bmatrix}
 = 0,
 \]

- J is the $|\text{dom}(\beta)| \times |\text{dom}(\beta)|$ Jacobian matrix given as
 \[
 J_{xy} = \frac{\partial \eta_{P_{\beta}}^{(t)}(x)}{\partial \theta_{P_{\beta}}^{(t)}(y)} = \sum_{s \in S} \zeta(x, s) \zeta(y, s) p_{\beta}^{(t)}(s) - \eta_{P_{\beta}}^{(t)}(x) \eta_{P_{\beta}}^{(t)}(y)
 \]
 for each $x, y \in \text{dom}(\beta)$
View Matrix as Poset

\[
\begin{bmatrix}
 p_{11} & p_{12} & p_{13} & p_{14} \\
 p_{21} & p_{22} & p_{23} & p_{24} \\
 p_{31} & p_{32} & p_{33} & p_{34} \\
 p_{41} & p_{42} & p_{43} & p_{44}
\end{bmatrix}
\]

\[
p_{11} \rightarrow p_{12} \rightarrow p_{13} \rightarrow p_{14}
\]

\[
p_{21} \rightarrow p_{22} \rightarrow p_{23} \rightarrow p_{24}
\]

\[
p_{31} \rightarrow p_{32} \rightarrow p_{33} \rightarrow p_{34}
\]

\[
p_{41} \rightarrow p_{42} \rightarrow p_{43} \rightarrow p_{44}
\]
Introduce \(\theta \) and \(\eta \)

\[
\begin{bmatrix}
\eta_{11} & \eta_{12} & \eta_{13} & \eta_{14} \\
\eta_{21} & \eta_{22} & \eta_{23} & \eta_{24} \\
\eta_{31} & \eta_{32} & \eta_{33} & \eta_{34} \\
\eta_{41} & \eta_{42} & \eta_{43} & \eta_{44}
\end{bmatrix}
\]

Matrix balancing is achieved if:
\(\eta_{11} = 4, \eta_{21} = 3, \eta_{31} = 2, \eta_{41} = 1 \)
\(\eta_{11} = 4, \eta_{12} = 3, \eta_{13} = 2, \eta_{14} = 1 \)
Introduce θ and η

Matrix balancing is achieved if:

$$
\begin{bmatrix}
\eta_{11} & \eta_{12} & \eta_{13} & \eta_{14} \\
\eta_{21} & \eta_{22} & \eta_{23} & \eta_{24} \\
\eta_{31} & \eta_{32} & \eta_{33} & \eta_{34} \\
\eta_{41} & \eta_{42} & \eta_{43} & \eta_{44}
\end{bmatrix}
$$

<table>
<thead>
<tr>
<th>η_{11}</th>
<th>η_{12}</th>
<th>η_{13}</th>
<th>η_{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$
\begin{bmatrix}
\theta_{11} & \theta_{12} & \theta_{13} & \theta_{14} \\
\theta_{21} & \theta_{22} & \theta_{23} & \theta_{24} \\
\theta_{31} & \theta_{32} & \theta_{33} & \theta_{34} \\
\theta_{41} & \theta_{42} & \theta_{43} & \theta_{44}
\end{bmatrix}
$$

Matrix balancing is achieved if:

- $\eta_{11} = 4, \eta_{21} = 3, \eta_{31} = 2, \eta_{41} = 1$
- $\eta_{11} = 4, \eta_{12} = 3, \eta_{13} = 2, \eta_{14} = 1$
Introduce θ and η

Matrix balancing is achieved if:

$\eta_{11} = 4, \eta_{21} = 3, \eta_{31} = 2, \eta_{41} = 1$

$\eta_{11} = 4, \eta_{12} = 3, \eta_{13} = 2, \eta_{14} = 1$
Introduce θ and η

\[
\begin{bmatrix}
\eta_{11} & \eta_{12} & \eta_{13} & \eta_{14} \\
\eta_{21} & \eta_{22} & \eta_{23} & \eta_{24} \\
\eta_{31} & \eta_{32} & \eta_{33} & \eta_{34} \\
\eta_{41} & \eta_{42} & \eta_{43} & \eta_{44}
\end{bmatrix}
\]

Matrix balancing is achieved if:
- $\eta_{11} = 4, \eta_{21} = 3, \eta_{31} = 2, \eta_{41} = 1$
- $\eta_{11} = 4, \eta_{12} = 3, \eta_{13} = 2, \eta_{14} = 1$
Introduce θ and η

Matrix balancing is achieved if:

$\eta_{11} = 4, \eta_{21} = 3, \eta_{31} = 2, \eta_{41} = 1$

$\eta_{11} = 4, \eta_{12} = 3, \eta_{13} = 2, \eta_{14} = 1$

$$
\begin{bmatrix}
\eta_{11} & \eta_{12} & \eta_{13} & \eta_{14} \\
\eta_{21} & \eta_{22} & \eta_{23} & \eta_{24} \\
\eta_{31} & \eta_{32} & \eta_{33} & \eta_{34} \\
\eta_{41} & \eta_{42} & \eta_{43} & \eta_{44}
\end{bmatrix}
$$
Matrix balancing is achieved if:

$\eta_{11} = 4, \eta_{21} = 3, \eta_{31} = 2, \eta_{41} = 1$

$\eta_{11} = 4, \eta_{12} = 3, \eta_{13} = 2, \eta_{14} = 1$

$\eta_{11} \eta_{12} \eta_{13} \ldots \theta_{42} \theta_{43} \theta_{44}$
Given tensor \(\eta_{ii} = \eta_{ii} = i \)

Balanced tensors

\[\eta = \begin{pmatrix} \eta_{11} & \eta_{12} & \eta_{13} & \eta_{14} \\ \eta_{21} & \theta_{22} & \theta_{23} & \theta_{24} \\ \eta_{31} & \theta_{32} & \theta_{33} & \theta_{34} \\ \eta_{41} & \theta_{42} & \theta_{43} & \theta_{44} \end{pmatrix} \]
Conclusion

- We have achieved efficient tensor balancing with Newton’s method
- We have introduced the dually flat structure into distribution of partially ordered outcome space
 - e-projection =
 - Tensor balancing
 - Maximum Likelihood Estimation
- Partial order structure (discrete) + Information geometry (continuous) = efficient and effective data analysis methods!
Möbius Inversion

• The Möbius inversion formula [Rota (1964)]:

\[
g(x) = \sum_{s \in S} \zeta(s, x)f(s) = \sum_{s \leq x} f(s)
\]

\[
\iff f(x) = \sum_{s \in S} \mu(s, x)g(s),
\]

A-1/A-10
Möbius Function Is Generalization of Inclusion-Exclusion Principle

- For sets A, B, C,
 \[|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C| \]

- In general, for A_1, A_2, \ldots, A_n,
 \[
 \left| \bigcup_{i} A_i \right| = \sum_{J \subseteq \{1, \ldots, n\}, J \neq \emptyset} (-1)^{|J|-1} \left| \bigcap_{j \in J} A_j \right|
 \]

- The Möbius function μ is the generalization of “$(-1)^{|J|-1}$”
Fisher Information Matrix and Orthogonality

- Since \(g(\xi) \) coincides with the Fisher information matrix,
 \[
 E \left[\frac{\partial}{\partial \theta(x)} \log p(s) \frac{\partial}{\partial \theta(y)} \log p(s) \right] = \sum_{s \in S} \zeta(x, s) \zeta(y, s) p(s) - \eta(x) \eta(y),
 \]
 \[
 E \left[\frac{\partial}{\partial \eta(x)} \log p(s) \frac{\partial}{\partial \eta(y)} \log p(s) \right] = \sum_{s \in S} \mu(s, x) \mu(s, y) p(s)^{-1}
 \]
- \(\theta \) and \(\eta \) are orthogonal, i.e.,
 \[
 E \left[\frac{\partial}{\partial \theta(x)} \log p(s) \frac{\partial}{\partial \eta(y)} \log p(s) \right] = \sum_{s \in S} \zeta(x, s) \mu(s, y) = \delta_{xy}
 \]
m-Projection

- Submanifold by β: $\mathcal{S}(\beta) = \{ P \in \mathcal{S} \mid \theta_P(x) = \beta(x), \ \forall x \in \text{dom}(\beta) \}$

- m-projection of $P \in \mathcal{S}$ onto $\mathcal{S}(\beta)$ is $P_\beta \in \mathcal{S}(\beta)$ s.t.
 \[
 \begin{cases}
 \theta_{P_\beta}(x) = \beta(x) & \text{if } x \in \text{dom}(\beta), \\
 \eta_{P_\beta}(x) = \eta_P(x) & \text{if } x \in (S \setminus \{\perp\}) \setminus \text{dom}(\beta)
 \end{cases}
 \]
 - This is the minimizer of the KL divergence from P to $\mathcal{S}(\beta)$:
 \[P_\beta = \arg\min_{Q \in \mathcal{S}(\beta)} D_{\text{KL}}[P, Q]\]
 - The projected distribution P_β always uniquely exists

- Pythagorean theorem: $D_{\text{KL}}[P, Q] = D_{\text{KL}}[P, P_\beta] + D_{\text{KL}}[P_\beta, Q]$ for all $Q \in \mathcal{S}(\beta)$
e-Projection

• Submanifold by β: $\mathcal{S}(\beta) = \{P \in \mathcal{S} \mid \eta_P(x) = \beta(x), \forall x \in \text{dom}(\beta)\}$

• e-projection of $P \in \mathcal{S}$ onto $\mathcal{S}(\beta)$ is $P_\beta \in \mathcal{S}(\beta)$ s.t.
 \[
 \begin{cases}
 \theta_{P_\beta}(x) = \theta_P(x) & \text{if } x \in (\mathcal{S} \setminus \{\perp\}) \setminus \text{dom}(\beta), \\
 \eta_{P_\beta}(x) = \beta(x) & \text{if } x \in \text{dom}(\beta)
 \end{cases}
 \]

 – This is the minimizer of the KL divergence from P to $\mathcal{S}(\beta)$:
 \[P_\beta = \arg\min_{Q \in \mathcal{S}(\beta)} D_{KL}[P, Q]\]

 – The projected distribution P_β always uniquely exists

• Pythagorean theorem: $D_{KL}[P, Q] = D_{KL}[P, P_\beta] + D_{KL}[P_\beta, Q]$ for all $Q \in \mathcal{S}(\beta)$
Computation of e-Projection

- Given P and β, we compute P_β such that
 \[
 \begin{cases}
 \theta_{P_\beta}(x) = \theta_{P}(x) & \text{if } x \in (S \setminus \{\perp\}) \setminus \text{dom}(\beta), \\
 \eta_{P_\beta}(x) = \beta(x) & \text{if } x \in \text{dom}(\beta)
 \end{cases}
 \]

- Initialize with $P^{(o)}_\beta = P$ and, at each step t,
 update $\eta^{(t)}_{P_\beta}(x)$ for $x \in \text{dom}(\beta)$
 - Since θ and η are orthogonal, we can change $\eta^{(t)}_{P_\beta}(x)$
 while fixing $\theta^{(t)}_{P_\beta}(y)$ for $y \notin \text{dom}(\beta)$
Matrix And Tensor Balancing

- Given a nonnegative matrix $P = (p_{ij}) \in \mathbb{R}_{+}^{n \times n}$, find $r, s \in \mathbb{R}^n$ s.t.
 $$(RPS)\mathbf{1} = \mathbf{1} \quad \text{and} \quad (RPS)^T \mathbf{1} = \mathbf{1},$$
 where $R = \text{diag}(r), S = \text{diag}(s)$

- Given a tensor $P \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_N}$ with $n_1 = \cdots = n_N = n$, find $(N-1)$ order tensors R^1, R^2, \ldots, R^N s.t. $\forall m \in [N]$ $P' \times_m \mathbf{1} = \mathbf{1} \in \mathbb{R}^{n_1 \times \cdots \times n_{m-1} \times n_{m+1} \times \cdots \times n_N}$
 - Each entry $p'_{i_1i_2\ldots i_N}$ of the balanced tensor P' is given as
 $$p'_{i_1i_2\ldots i_N} = p_{i_1i_2\ldots i_N} \prod_{m \in [N]} R^m_{i_1\ldots i_{m-1}i_{m+1}\ldots i_N}$$
 - The balanced tensor P' is called multistochastic
Matrix balancing is achieved if:
\[
\begin{align*}
\eta_{11} &= 4, \quad \eta_{21} = 3, \quad \eta_{31} = 2, \quad \eta_{41} = 1 \\
\eta_{11} &= 4, \quad \eta_{12} = 3, \quad \eta_{13} = 2, \quad \eta_{14} = 1
\end{align*}
\]
Results on Hessenberg Matrix ($n = 20$)

Number of iterations

Residual

10^{-7}

10^{-5}

10^{-3}

10^{-1}

10^{0}

10^{1}

10^{2}

10^{3}

10^{4}

10^{5}

10^{6}

10^{7}

10^{8}

10^{9}

10^{10}

Sinkhorn

Newton

BNEWT

Number of iterations

Residual

10^{-7}

10^{-5}

10^{-3}

10^{-1}

10^{0}

10^{1}

10^{2}

10^{3}

10^{4}

10^{5}

10^{6}

10^{7}

10^{8}

10^{9}

10^{10}

Sinkhorn

Newton

BNEWT

A-9/A-10
Results on Trefethen Matrix

<table>
<thead>
<tr>
<th>n</th>
<th>Number of iterations</th>
<th>Running time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>10</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>100</td>
<td>10^{3}</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>200</td>
<td>10^{6}</td>
<td>10^{1}</td>
</tr>
<tr>
<td>300</td>
<td>10^{9}</td>
<td>10^{3}</td>
</tr>
</tbody>
</table>

Graphs showing the number of iterations and running time for Newton (proposed), Sinkhorn, and BNEWT methods as a function of n. The number of iterations generally increases with n, while the running time increases significantly with larger n for all methods.