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Abstract. We propose a new approach for semi-supervised learning using closed set lattices, which have been recently used for
frequent pattern mining within the framework of the data analysis technique of Formal Concept Analysis (FCA). We present
a learning algorithm, called SELF (SEmi-supervised Learning via FCA), which performs as a multiclass classifier and a label
ranker for mixed-type data containing both discrete and continuous variables, while only few learning algorithms such as the
decision tree-based classifier can directly handle mixed-type data. From both labeled and unlabeled data, SELF constructs
a closed set lattice, which is a partially ordered set of data clusters with respect to subset inclusion, via FCA together with
discretizing continuous variables, followed by learning classification rules through finding maximal clusters on the lattice.
Moreover, it can weight each classification rule using the lattice, which gives a partial order of preference over class labels.
We illustrate experimentally the competitive performance of SELF in classification and ranking compared to other learning
algorithms using UCI datasets.
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1. Introduction

In various research domains from biology to economics, numerous mixed-type data including both dis-
crete (binary or nominal) and continuous (real-valued) variables are collected by researchers. However,
despite recent rapid development of many data analysis techniques in the fields of machine learning, data
mining, and knowledge discovery, only few algorithms such as the decision tree-based classifier [29] can
directly handle such mixed-type data. In particular, to the best of our knowledge, no learning algorithm
treats mixed-type data in a semi-supervised manner.

Semi-supervised learning is a special form of classification [48,50]; a learning algorithm uses both
labeled and unlabeled data to learn classification rules. In real tasks, it is often difficult to obtain enough
labeled data since the task of labeling has a high cost in terms of time and money, while lots of unlabeled
data can be collected easily. The goal of semi-supervised learning is to construct a better classifier using
such large amount of unlabeled data together with labeled data in short supply.

∗Corresponding author: Mahito Sugiyama, Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku,
606-8501 Kyoto, Japan. Tel.: +81 75 753 5628; Fax: +81 75 753 5628; E-mail: mahito@iip.ist.i.kyoto-u.ac.jp; Present address:
Max Planck Institute for Intelligent Systems, AG K. Borgwardt, Spemannstr. 38, 72076, Tübingen, Germany. Tel.: +49 7071
601 1789; E-mail: mahito.sugiyama@tuebingen.mpg.de.

1088-467X/13/$27.50 c© 2013 – IOS Press and the authors. All rights reserved



400 M. Sugiyama and A. Yamamoto / Semi-supervised learning on closed set lattices

To effectively use unlabeled mixed-type data for learning, we in this paper propose a novel semi-
supervised learning algorithm, called SELF (SEmi-supervised Learning via Formal Concept Analysis),
which can directly treat mixed-type data. SELF adopts a popular semi-supervised learning strategy,
called cluster-and-label [6,9], where a clustering algorithm is first applied, followed by labeling each
cluster using labeled data. One of the remarkable features of SELF is that it performs the clustering
process using Formal Concept Analysis (FCA) [8,14], which is a mathematical theory for data analysis
and knowledge representation introduced by Wille [45]. Recently, Pasquier et al. [30] proposed to use
closed patterns (itemsets) obtained by FCA as condensed “lossless” representations of patterns. This
new approach has been the subject of further research and extensions [1,31,36,46]. In SELF, the label-
ing process is performed on a closed set lattice, which is the result of FCA. Informally, this structure
describes the maximally general classification rules that explain the training data, thus preventing over-
fitting. Moreover, each classification rule can be weighted using the closed set lattice by counting the
number of clusters classified by the rule, resulting in the preference of class labels as a partial order of
them for each unlabeled datum. Furthermore, FCA and closed set lattices enable us to naturally treat
incomplete data including missing values.

To summarize, this paper provides contributions to the respective fields of:
1. To semi-supervised learning: we present a novel approach based on an algebraic framework without

assuming any data distribution.
2. To FCA: we study a novel application, semi-supervised learning, using FCA and closed set lattices.
The behavior of SELF is outlined as a flowchart in Fig. 1, and this paper is organized along it after

discussing about related work in Section 2. The data preprocessing phase to construct a context from a
given dataset to apply FCA is explained in Section 3.1. Missing values are handled in this phase. The
learning phase is described in Sections 3.2 and 3.3; Section 3.2 shows data clustering and making closed
set lattices by FCA and Section 3.3 explains the training algorithm of SELF to learn classification rules.
Classification by learned rules is considered in Section 3.4. Section 4 gives empirical evaluation of SELF
and, finally, key points and future work are summarized in Section 5.

2. Related work

Many studies have used FCA for machine learning and knowledge discovery [26], such as classifica-
tion [12,13], clustering [47], frequent pattern and association rule mining [20,30,41], and bioinformat-
ics [2,23,25]. In particular, Ganter and Kuznetsov [13] investigated the problem of binary classification
of real-valued data and proposed algorithms based on the JSM-method that produces hypotheses (classi-
fiers) using positive and negative examples. Their idea of using the lattice structure derived by FCA for
classification is similar to our approach, but the way of treating continuous variables is different. Their
method discretizes continuous variables by inequations, called conceptual scaling [14], that are given a
priori, while SELF automatically discretizes them along with the learning process and no background
knowledge and assumption about data are needed.

On the other hand, in machine learning context, decision tree-based algorithms such as C4.5 [32,33]
can treat mixed-type data by discretizing continuous variables, and there are several discretization tech-
niques [10,27,38] to treat continuous variables in a discrete manner. Our approach is different from them
since we integrate discretization process into learning process and avoid overfitting using closed set lat-
tices effectively. SELF uses cluster-and-label, or called label propagation, which is a popular approach
in semi-supervised learning as mentioned in Introduction [4,6,9,19,44]. First SELF makes clusters with-
out label information by FCA, followed by giving preferences of class labels for each cluster. To date,
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Fig. 1. A flowchart of the proposed SELF algorithm. It learns classification rules from training data and applies them to classify
test data. Here we say that a concept is consistent if all labels contained in the concept are same.

most of such approaches are designed for only continuous variables and, to the best of our knowledge,
no semi-supervised learning algorithm based on cluster-and-label can treat mixed-type data including
discrete variables appropriately. Since SELF uses FCA for clustering, it needs no distance calculation
and no data distribution, which is one of the remarkable features of SELF.

There exists a study by Kok and Domingos [24] which is related to the idea of putting original data
on lattices. They proposed a learning algorithm via hypergraph lifting, which constructs clusters by
hypergraphs and learns on them. Their idea is thus similar to ours since we also “lift” raw data to
the space of a closed set lattice via FCA. However, it is difficult to treat continuous variables in their
approach, thereby our approach can be more useful for machine learning and knowledge discovery from
mixed-type data.

SELF achieves not only semi-supervised learning but also label ranking using the preference for each
class label. Recently, the concept of preference has attracted more and more attention in artificial intel-
ligence including machine learning, resulting in formalization of the research topic of preference learn-
ing [49]. In particular, label ranking [5,18,43] has been treated in preference learning as an extension
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Table 1
Notation used in this paper

R The set of real numbers
τ = (H,X) Table, pair of header H and body X
set(X) The set of tuples of body X
h Feature (element in H)
x,y Tuple
⊥ Missing value
n Number of data (objects)
d Number of features
Dom (h) Domain of the feature h
G The set of objects
M The set of attributes
I Binary relation between G and M
(G,M, I) Context
g Object, identified with tuple
m Attribute
h.m Qualified attribute generated from feature h
′′ Closure operator
B(G,M, I) Concept lattice
λ Label
Λ(g) Label of object g
Γ(G) Set of labeled objects in G
R Classification rule (pair of set of attributes and label)
ω(R) Weight of classification rule R
ψ(λ ) Preference of label λ
≺∗ True partial order
≺ Predicted partial order
CR(≺,≺∗) Correctness of ≺
CP(≺) Completeness of ≺

of traditional supervised classification, where the objective is to obtain a ranker which gives a (partial)
order of labels for each datum. SELF is the first algorithm that treats label ranking of mixed-type data
by weighting each classification rule through closed set lattices.

3. SELF algorithm

We present the SELF algorithm in this section, which is the main part of this paper. The behavior of
SELF is illustrated in Fig. 1; first it performs data preprocessing to make a context from a given dataset,
second it constructs concept lattices by FCA, and third it learns the preference for each class label.
Notations used in this paper are summarized in Table 1.

3.1. Data preprocessing

The aim of data preprocessing is to construct a (formal) context, a binary matrix specifying a set of
objects and their attributes, to apply FCA to training data.

A dataset τ is given in the form of a table, or a relation [7,15,37]. Each table is a pair τ = (H,X) of
a header H and a body X . We always denote the header size and the body size by d and n, respectively.
An element of the header h ∈ H is called a feature1 and the domain of h is denoted by Dom(h). The

1It is usually called an attribute, but to avoid confusion with an attribute in a context, we use the word “feature”.
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body X is a sequence of tuples x1,x2, . . . ,xn, where each tuple xi is a total function from H to Dom(H) =
{Dom(h) | h ∈ H} such that xi(h) ∈ Dom(h) for all h ∈ H . Informally, each tuple corresponds to a data
point. Missing values in X are allowed and denoted by the special symbol ⊥, that is, if the value xi(h)
is missing, xi(h) = ⊥. In addition, we denote the body X by set(X) when we treat it as a set, that is,
set(X) = {x1,x2, . . . ,xn}. Thus we do not take the order and multiplicity into account in set(X). For each
tuple x and a subset J of the header H , the projection of x on J, denoted by x|J , is exactly the same as the
restriction of x to J, i.e., the function from J to Dom(H) such that x|J(h) = x(h) for all h ∈ J.

We consider two types of variables, discrete and continuous, in this paper. If a feature h∈H is discrete,
Dom(h) = S∪{⊥} for some countable set S. For instance, S = {T,F} if the feature h is binary and S is
a (finite) set of symbols if j is nominal (categorical). If h is continuous, Dom(h) = R∪{⊥}, where R is
the set of real numbers.

In FCA, we call a triplet (G,M, I) context. Here G and M are sets and I ⊆ G×M is a binary relation
between G and M. The elements in G are called objects, and those in M are called attributes. For a given
table τ = (H,X), we identify the set of objects G with set(X) = {x1,x2, . . . ,xn}.

In the data preprocessing, for each feature h ∈ H of a table τ , we independently construct a context
(G,Mh, Ih) and combine them into a context (G,M, I). For this process, we always qualify attributes to
be disjoint by denoting each element m of the attribute Mh by h.m following the notations used in the
database systems literature [15].

First, we focus on preprocessing for discrete variables. Since a context is also a discrete representation
of a dataset, this process is directly achieved as follows: For each feature h, the set of attributes Mh =
{h.m|m ∈ Dom(h) \ {⊥}} and, for each value xi(h), (xi,h.m) ∈ Ih if and only if xi(h) = m. In this
way, discrete values are translated into a context and missing values are naturally treated. Algorithm 1
performs this translation.

Algorithm 1: Data preprocessing for discrete variables
Input: Table τ = (H,X) whose variables are discrete
Output: Context (G,MD, ID)
function CONTEXTD(τ)
1: G← set(X)
2: for each h ∈ H
3: Mh← {h.m | m ∈ Dom(h)\{⊥}}
4: Ih←{(x,h.x(h)) | x ∈ G and x(h) 
=⊥}
5: end for
6: combine all (G,Mh, Ih) with h ∈ H into (G,MD, ID)
7: return (G,MD, ID)

Example 1 Given a table τ = (H,X) with H = {1,2,3} and X = x1,x2 such that

(x1(1),x1(2),x1(3)) = (T,⊥,C),
(x2(1),x2(2),x2(3)) = (F,F,⊥).

This table can be represented in the following manner.

H 1 2 3
X x1 T ⊥ C

x2 F F ⊥
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The domains are given as Dom (1) = Dom (2) = {T,F} and Dom (3) = {A, B, C}. Here we have

G = {x1,x2},
(M1, I1) = ({1.T,1.F},{(x1,1.T),(x2,1.F)}),
(M2, I2) = ({2.T,2.F},{(x2,2.F)}),
(M3, I3) = ({3.A,3.B,3.C},{(x1,3.C)}).

Thus we have the context (G,M, I) such that

M = M1∪M2∪M3 = {1.T,1.F,2.T,2.F,3.A,3.B,3.C},
I = I1∪ I2∪ I3 = {(x1,1.T),(x1,3.C),(x2,1.F),(x2,2.F)}.

It is visualized as a cross-table as follows:

1.T 1.F 2.T 2.F 3.A 3.B 3.C
x1 × ×
x2 × ×

Second, we make a context from continuous variables using discretization. This process is embedded
in the learning process (see Fig. 1) and discretizing resolution increases along with the process. The
degree of resolution is denoted by a natural number k, called discretization level and, in the following, we
explain how to discretize continuous variables at fixed level k. First we use min-max normalization [17]
so that every datum is in the closed interval [0,1]. For every feature h, each value x(h) is mapped to a
value y(h) such that

y(h) =
x(h)−minx∈set(X) x(h)

maxx∈set(X) x(h)−minx∈set(X) x(h)
.

Next, we discretize values in [0,1] and make a context using the binary encoding of real numbers,
following the approach we have used [39]. At discretization level k, Mh for a feature h ∈H is always the
set {h.1,h.2, . . . ,h.2k}. For each value xi(h), if xi(h) = 0, then (xi,h.1) ∈ Ih. Otherwise if xi(h) 
= 0, then
(xi,h.a) ∈ Ih if and only if

a−1
2k < xi(h)�

a
2k .

If xi(h) =⊥, then (xi,m) 
∈ Ih for all m ∈Mh. This means that if we encode the value xi(h) as an infinite
sequence p = p0 p1 p2 . . . , a context at level k is decided by the first k bits p0 p1 . . . pk−1. Each value is
converted to exactly one relation of a context if it is not missing. Algorithm 2 shows the above process
for making a context from continuous variables.

Example 2 Given a table τ = (H,X) with H = {1,2,3,4} and X = x1,x2 such that

(x1(1),x1(2),x1(3)) = (T,C,0.35,0.78),

(x2(1),x2(2),x2(3)) = (⊥,⊥,0.813,⊥).
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Algorithm 2: Data preprocessing for continuous variables
Input: Table τ = (H,X) whose variables are continuous, and discretization level k
Output: Context (G,MC, IC)
function CONTEXTC(τ , k)
1: G← set(X)
2: for each h ∈ H
3: Mh←{h.1,h.2, . . . ,h.2k}
4: Normalize values in the feature h by min-max normalization
5: Ih← /0
6: for each x ∈ G
7: if x(h) = 0 then Ih← Ih∪{(x,1)}
8: else if x(h) 
= 0 and x(h) 
=⊥ then
9: Ih← Ih∪{(x,h.a)}, where (a−1)/2k < x(h)� a/2k

10: end if
11: end for
12: end for
13: combine all (G,Mh, Ih) with h ∈ H into (G,MC, IC)
14: return (G,MC, IC)

It can be represented as follows:

H 1 2 3 4
X x1 T C 0.35 0.78

x2 ⊥ ⊥ 0.813 ⊥
where the first and second features are discrete with Dom(1) = {T,F} and Dom(2) = {A,B,C}, and the
third and forth are continuous. Assume that discretization level k = 1. We have

G = {x1,x2},
(M1, I1) = ({1.T,1.F},{(x1,1.T)}),
(M2, I2) = ({2.A,2.B,2.C},{(x1,2.C)}),
(M3, I3) = ({3.1,3.2},{(x1,3.1),(x2,3.2)}),
(M4, I4) = ({4.1,4.2},{(x1,4.2)}).

Thus we have the context (G,M, I) such that M = M1∪M2∪M3∪M4 and I = I1∪ I2∪ I3∪ I4, which is
visualized as a cross-table as follows:

1.T 1.F 2.A 2.B 2.C 3.1 3.2 4.1 4.2
x1 × × × ×
x2 ×

3.2. Clustering and making lattices by FCA

From a context obtained by the data preprocessing, we generate closed sets as clusters of data points
and construct closed set lattices by FCA. First we summarize FCA (see the articles [8,14] for detail). We
always assume that a given table τ is converted into a context (G,M, I) by Algorithms 1 and 2.

For subsets A⊆ G and B⊆M, we define

A′ := {m ∈M | (g,m) ∈ I for all g ∈ A},
B′ := {g ∈ G | (g,m) ∈ I for all m ∈ B}.
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Fig. 2. The closed set lattice (concept lattice) constructed from the context given in Example 3.2. In this diagram, each dot
denotes a concept, which are treated as a cluster in SELF.

Using these mappings, we define a concept as follows: a pair (A,B) with A ⊆ G and B ⊆ M is called
a concept of a context (G,M, I) if A′ = B and A = B′. The set A is called an extent and B an intent.
Each operator ′ is a Galois connection between the power set lattices on G and M, respectively, hence
the mapping ′′ becomes a closure operator on the context (G,M, I). This means that, for each concept
(A,B), A and B are (algebraic) closed sets. Note that a subset A ⊆ G (resp. B ⊆M) is the extent (resp.
intent) of some concept if and only if A′′ = A (resp. B′′ = B). Thus a set of objects A⊆G forms a cluster
if and only if A′′ = A. Each object usually belongs to more than one cluster, hence this method is not
“crisp” clustering.

The set of concepts over (G,M, I) is written by B(G,M, I) and called the concept lattice. If we focus
on either one of the set of objects or attributes, this lattice is called the closed set lattice. In particular,
in the context of frequent pattern mining, a set of attributes corresponds to an itemset and the lattice is
called the closed itemset lattice. For a pair of concepts (A1,B1) ∈B(G,M, I) and (A2,B2) ∈B(G,M, I),
we write (A1,B1) � (A2,B2) if A1 ⊆ A2. Then (A1,B1) � (A2,B2) holds if and only if A1 ⊆ A2 (and if
and only if B1 ⊇ B2). This relation � becomes an order on B(G,M, I) in the mathematical sense and
〈B(G,M, I),�〉 becomes a complete lattice. Let C ⊆B(G,M, I). A concept (A,B) ∈ C is a maximal
element of C if (A,B) � (X ,Y ) and (X ,Y ) ∈ C imply (A,B) = (X ,Y ) for all (X ,Y ) ∈ C. We write the
set of maximal elements of C by MaxC .

Many algorithms are available for constructing closed set lattices, or concept lattices, and the algo-
rithm proposed by Makino and Uno [28] is known to be one of the fastest algorithms. Their algorithm
enumerates all maximal bipartite cliques in a bipartite graph with O(Δ3) delay, where Δ is the maximum
degree of the given bipartite graph, that is,

Δ = max
{

#J
∣∣∣∣ J ⊆ I, where

g = h for all (g,m),(h, l) ∈ J, or
m = l for all (g,m),(h, l) ∈ J

}
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(#J is the number of elements in J) in the FCA context. A concept coincides with a bipartite graph, hence
we can use their algorithm directly. For empirical experiments, we use the program LCM [40] provided
by the authors to enumerate all concepts and construct the closed set lattice.

Example 3 Given the following context:

1 2 3 4 5
x1 × × ×
x2 × × ×
x3 ×
x4 × ×

There exist eight concepts in total; ( /0, {1,2,3,4,5}), ({x1}, {1,2,4}), ({x2}, {2,4,5}), ({x3}, {3}),
({x1,x2}, {2,4}), ({x2,x4}, {2,5}), ({x1,x2,x4}, {2}), and ({x1,x2,x3,x4}, /0), and Δ = 3. We show
the closed set lattice in Fig. 2. Let C = {( /0, {1,2,3,4,5}), ({x1}, {1,2,4}), ({x2}, {2,4,5}), ({x1,x2},
{2,4}), ({x2,x4}, {2,5})}. Then MaxC = {({x1}, {1,2,4}), ({x1,x2}, {2,4}), ({x2,x4}, {2,5})}.

3.3. Learning classification rules

Here we present the main learning algorithm of SELF in Algorithm 3, which obtains a set of classifi-
cation rules from a table τ for training. In this paper, a classification rule is a pair of a set of attributes and
a label. Intuitively, every unlabeled tuple (datum) is classified to the associated label if it has the same
attributes. SELF generates a set of classification rules at each discretization level. We give the precise
algorithm of classification in the next subsection.

Algorithm 3: Main learning algorithm of SELF; learning classification rules
Input: Table τ = (H,X)
Output: Classification rules R1,R2, . . . ,RK
function MAIN(τ)
1: Divide τ vertically into two tables τD and τC, where τD contains all discrete

variables in τ and τC contains all continuous variables in τ
2: (G,MD, ID)← CONTEXTD(τD)

// make a context from discrete variables of τ (see Section 3.1)
3: k← 1 // k is discretization level
4: LEARNING(τC,G,MD, ID,k) // use this function recursively
function LEARNING(τC,G,MD, ID,k)
1: (G,MC, IC)← CONTEXTC(τC,k)

// make a context from continuous variables of τ at level k (see Section 3.1)
2: make (G,M, I) from (G,MD, ID) and (G,MC, IC)
3: construct the concept lattice B(G,M, I) from (G,M, I) (see Section 3.2)
4: C ←{(A,B) ∈B(G,M, I) | (A,B) is consistent}
5: Rk←{(B,Λ(g)) | (A,B) ∈MaxC andg ∈ Γ(A)}
6: output Rk
7: G← G\{g | g ∈ A for some (A,B) ∈ C }
8: remove corresponding attributes and relations from MD and ID, respectively
9: remove corresponding tuples from τC
10: if Γ(G) = /0 then halt
11: else LEARNING(τC,G,MD, ID,k+1)
12: end if

We introduce some notations. For each object g ∈ G, we denote a label, an identifier of a class, of g
by Λ(g), and if g is unlabeled; i.e., the label information is missing, we write Λ(g) = ⊥. Moreover, we
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define Γ(G) := {g ∈G |Λ(g) 
=⊥}, hence objects in Γ(G) are labeled objects, and those in G\Γ(G) are
unlabeled objects. For a concept (A,B) ∈B(G,M, I), we say that it is consistent if Γ(A) 
= /0 and Λ(g) =
Λ(h) for all g,h ∈ Γ(A). Note that a concept with Γ(A) = /0 (all labels are missing) is not consistent.

First SELF performs data preprocessing and makes the context (G,M, I) from a given table at each
discretization level k using the algorithms given in Section 3.1. Second it constructs the concept lattice
B(G,M, I) using both labeled and unlabeled tuples and finds consistent concepts using labeled tuples
(objects). Third it outputs the sets of classification rules such that

Rk = {(B,λ ) | (A,B) ∈MaxCk and λ = Λ(g) with g ∈ Γ(A)}, where

Ck = {(A,B) ∈B(G,M, I) | (A,B) is consistent}
at discretization level k. The lattice enables us to avoid overfitting since, informally, attributes of maximal
concepts correspond to the most general classification rules. If some objects that are not contained in
consistent concepts remains, it refines discretization; i.e., increases discretization level, and repeats the
above procedure for the remaining objects.

Moreover, SELF weights each classification rule. For a classification rule R = (B,λ ), the weight ω(R)
is defined as follows:

ω(R) := #{(C,D) ∈B(G,M, I) | D⊇ B}.
Intuitively, the weight of a rule R means its importance since it is the number of clusters classified by
the rule. Using the weight of rules, label ranking is realized (see the next subsection).

Example 4 Given a dataset τ = (H,X) and its labels as follows:

H 1 2 3

X

x1 T C 0.28
x2 F A 0.54
x3 T B ⊥
x4 F A 0.79
x5 T C 0.81

Label
1
1
⊥
2
⊥

where Dom(1) = {T,F}∪{⊥}, Dom(2) = {A,B,C}∪{⊥}, and Dom(3) = R∪{⊥}. At discretization
level 1, we have the following context:

1.T 1.F 2.A 2.B 2.C 3.1 3.2
x1 × × ×
x2 × × ×
x3 × ×
x4 × × ×
x5 × × ×

We show the closed set lattice in the left-hand side in Fig. 3. By SELF, we obtain R1 = {({1.T},1)}
since the concept ({x1,x3,x5},{1.T}) is the maximal consistent concept, and there is no consistent
concept that contains x2 or x4. This classification rule means “For a tuple x, if x(1) = T, then x is
classified to the class 1”. The weight is calculated as ω({1.T},1) = 6. SELF removes objects x1, x3, and
x5 contained in the consistent concepts and proceeds to the next level. At discretization level 2, we have
the following context:
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Fig. 3. The closed set lattices (concept lattices) at discretization levels 1 and 2 constructed during the learning phase in Exam-
ple 4. In these diagrams, each black dot denotes the maximal consistent concept in the set of concepts covered by the dotted
line.

1.T 1.F 2.A 2.B 2.C 3.1 3.2 3.3 3.4
x2 × × ×
x4 × × ×

The right-hand side in Fig. 3 shows the closed set lattice of the above context, and we obtain R2 =
{({1.F,2.A,3.3},1),({2.A,3.4},2)}. For instance, the first rule means “For a tuple x, if x(1)=F, x(2)=
A, and 0.5 < x(3)� 0.75, its class label is 1”. The weight are 2 for both rules.

We show that SELF always stops in finite time if there are no conflicting objects. Namely, for a
table τ = (H,X), if there is no pair x,y ∈ set(X) such that Λ(x) 
= Λ(y) and x(h) = y(h) for all h ∈ H ,
Algorithm 3 stops in finite time. This statement is proved in the following way: if discretization level
k is large enough, we have the concept lattice B(G,M, I), where for every object x ∈ G, there exists a
concept (A,B) such that A = {x} since there is no pair x,y ∈G satisfying x(h) = y(h) for all h ∈H . Thus
each object x with Λ(x) 
= ⊥ must be contained in some consistent concept, and the algorithm stops.
Note that the algorithm works even if Γ(G) = G; i.e., all objects have labels, hence it also can be viewed
as a supervised classification method.

The time complexity of learning by SELF is O(nd)+O(Δ3N) such that

N = max
k∈{1,2,...,K}

#B(Gk,Mk, Ik),

where (Gk,Mk, Ik) is the context at discretization level k and K is the level where SELF stops since data
preprocessing takes O(nd), making a concept lattice takes less than O(Δ3N), and obtaining classification
rules takes less than O(N).

3.4. Classification

Now we have sets of classification rules R1, R2, . . . , RK for each discretization level from training
mixed-type data including labeled and unlabeled data using Algorithms 1, 2, and 3. In this section, we
show how to classify a new unlabeled datum using the rules. We assume that such a new datum is given
as a table υ = (H,y), where the body y consists of only one tuple.

Algorithm 4 performs classification using the obtained rules R1, R2, . . . , RK . The algorithm is lev-
elwise; i.e., at each level k, it makes a context (G,M, I) from the table υ = (H,y) and apply the set of
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Table 2
Statistics for UCI datasets used for experiments

Name # Data # Classes # Features
Discrete Continuous

Abalone 4177 28 1 7
Allbp 2800 3 2 3
Anneal 798 5 28 10
Arrhythmia 452 13 5 5
Australian 690 2 7 4
Crx 690 2 9 6
Echocardiogram 131 2 1 7
Heart 270 2 7 6
Hepatitis 155 2 13 6
Horse colic 368 2 8 2

Algorithm 4: Classification
Input: Classification rules R1,R2, . . . ,RK , table υ = (H,y), and the set of labels L
Output: Preference of each label
function CLASSIFY(R1,R2, . . . ,RK , υ)
1: Divide υ vertically into two tables υD and υC, where υD contains all discrete

variables in υ and υC contains all continuous variables in υ
2: (G,MD, ID)← CONTEXTD(υD)

// make a context from discrete values of υ
3: for each λ ∈L
4: ψ(λ )← 0
5: for each k ∈ {1,2, . . . ,K}
6: (G,MC, IC)← CONTEXTC(υC,k)

// make a context from continuous values of υ at level k
7: make a context (G,M, I) from (G,MD, ID) and (G,MC, IC)
8: ψ(λ )← ψ(λ )+∑R∈Q ω(R), where Q = {(B,λ ) ∈Rk | (y,b) ∈ I for all b ∈ B}
9: end for

10: output ψ(λ )
11: end for

rules Rk to it. Let L be the domain of class labels. It checks all rules in Rk and, for each label λ ∈L ,
it outputs the preference of the label λ , which is defined as

ψ(λ ) :=
K

∑
k=1

∑
R∈Q

ω(R), where Q = {(B,λ ) ∈Rk | (y,b) ∈ I for all b ∈ B},

by summing up weights of rules. Note that the set G is always a singleton {y} in the classification phase.
The result means that if ψ(λ )> ψ(λ ′) for labels λ and λ ′, λ is preferable than λ ′, and vice versa, and
if ψ(λ ) = ψ(λ ), the preference of λ and λ ′ are same, resulting in the partial order over the set of labels
L . Thus the task of label ranking is achieved by the preference ψ . Moreover, if we pick up the label

λ ∈ argmaxλ∈L ψ(λ ), (1)

multiclass classification is also performed directly.

Example 5 Let us consider the case discussed in Example 4. A tuple y such that

(y(1),y(2),y(3))= (T,B,0.45)



M. Sugiyama and A. Yamamoto / Semi-supervised learning on closed set lattices 411

Fig. 4. Experimental results of accuracy for ten mixed-type datasets from UCI repository with varying the number of labeled
data. We performed SELF using both labeled and unlabeled data (SELF) and using only labeled data (SELF (w/o)), and com-
pared them to the decision tree-based classifier (Tree), SVM with the RBF kernel (SVM), and the k-nearest neighbor algorithm
(1-NN, 5-NN). Data show mean ± s.e.m.

satisfies only the rule ({1.T},1) ∈R1. Thus we have ψ(1) = 6 and ψ(2) = 0 for labels 1 and 2, respec-
tively. A tuple z with

(z(1),z(2),z(3))= (F,A,0.64)

satisfies only the rule ({1.F,2.A,3.3}), hence ψ(1) = 0 and ψ(2) = 2.

4. Experiments

We empirically evaluate SELF. Our experiments consist of two parts: one is about multiclass classifi-
cation, and the other is about label ranking.



412 M. Sugiyama and A. Yamamoto / Semi-supervised learning on closed set lattices

Fig. 5. Experimental results of accuracy for ten mixed-type datasets from UCI repository with varying the number of features.
The number of labeled data was fixed at 10 in each experiment. We performed SELF using both labeled and unlabeled data
(SELF) and using only labeled data (SELF (w/o)), and compared them to the decision tree-based classifier (Tree), SVM with
the RBF kernel (SVM), and the k-nearest neighbor algorithm (1-NN, 5-NN). Data show mean ± s.e.m.

4.1. Methods

4.1.1. Environment
SELF was implemented in R version 2.12.1 [34] and all experiments were performed in the R envi-

ronment. For enumeration of all concepts and construction of a closed set lattice from a context, we used
LCM2 distributed by Uno [40], which was implemented in C.

2http://research.nii.ac.jp/ uno/codes.htm.
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Fig. 6. Experimental results of accuracy for ten mixed-type datasets from UCI repository with varying the number of features.
The number of labeled data was fixed at 100 in each experiment. We performed SELF using both labeled and unlabeled data
(SELF) and using only labeled data (SELF (w/o)), and compared them to the decision tree-based classifier (Tree), SVM with
the RBF kernel (SVM), and the k-nearest neighbor algorithm (1-NN, 5-NN). Data show mean ± s.e.m.

4.1.2. Datasets
We collected ten mixed-type datasets from UCI Machine Learning Repository [11]: abalone, allbp,

anneal, arrhythmia, australian, crx, echocardiogram, heart, hepatitis, and horse colic. Their basic statis-
tics are summarized in Table 2. Datasets allbp, anneal, arrhythmia, australian, crx, echocardiogram,
hepatitis, and horse colic includes missing values, which were directly treated in SELF. In other learn-
ing algorithms, we ignored all tuples which have missing values since they cannot treat such datasets
appropriately.

In label ranking, we used four datasets: abalone, allbp, anneal, and arrhythmia, which have more than
three classes. The other datasets had only two classes and could not be used for label ranking evaluation.
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Fig. 7. Experimental results of correctness (should be maximized) for four mixed-type datasets from UCI repository with
varying the number of labeled data. We performed SELF using both labeled and unlabeled data (SELF) and using only labeled
data (SELF (w/o)), Data show mean ± s.e.m.

4.1.3. Control learning algorithms
In multiclass classification, three learning algorithms were adopted: the decision tree-based classifier

implemented in R supplied in the tree package [35], SVM with the RBF kernel (C = 5 and γ = 0.05) in
the kernlab package [21], and the k nearest neighbor algorithm (k = 1 and 5) in the class package.
Notice that only the decision tree-based algorithm can treat mixed-type data directly, which is one of
typical such learning algorithms. All discrete values were treated as continuous in SVM and kNN.

4.1.4. Evaluation
In classification, for each dataset, the following procedure was repeated 20 times and the mean and

s.e.m. (standard error of the mean) of accuracy was obtained: 1) the number of labeled data or features
was fixed, where the range was from 10 to 100 and 2 to 10, respectively, 2) labeled training data were
sampled randomly, 3) labels of the remaining data were predicted by respective learning algorithms, and
4) the accuracy was obtained.

The Eq. (1) was used to determine the most preferable label for each unlabeled datum. If there exists
more than two such labels, we chose the smallest one.

We adopted two criteria: correctness and completeness, used in the literature [5] to evaluate partial
orders of labels in label ranking. Correctness coincides with the gamma rank correlation [16], which is
the normalized difference between the number of correctly ranked pairs and that of incorrectly ranked
pairs. Let L be the set of class labels and we denote by ≺∗ the ground truth of the partial order over the
set of labels L . Assume that ≺ is a predicated partial order. Here we define

C := #{(λ ,λ ′) ∈L ×L | λ ≺ λ ′ and λ ≺∗ λ ′},
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Fig. 8. Experimental results of completeness (should be maximized) for four mixed-type datasets from UCI repository with
varying the number of labeled data. We performed SELF using both labeled and unlabeled data (SELF) and using only labeled
data (SELF (w/o)), Data show mean ± s.e.m.

D := #{(λ ,λ ′) ∈L ×L | λ ≺ λ ′ and λ ′ ≺∗ λ}.

Then, the correctness is defined by

CR(≺,≺∗) :=
C−D
C+D

.

Trivially, the correctness takes a value in [−1,1], and CR(≺,≺∗) = 1 if ≺=≺∗ and CR(≺,≺∗) =−1 if
≺ is the inversion of≺∗. Thus the correctness should be maximized. Moreover, to evaluate the degree of
completeness of a predicted partial order, we use the completeness defined as follows:

CP(≺) :=
C+D

#{(λ ,λ ′) ∈L ×L | λ ≺∗ λ ′ or λ ′ ≺∗ λ} .

The completeness takes a value in [0,1] and should be maximized.

4.2. Results

4.2.1. Multiclass classification
We evaluated SELF in multiclass classification. Specifically, we examined SELF’s behavior with re-

spect to the number of labeled data and the number of features; the number of labeled data was varied
from 10 to 100, and the number of features from 2 to 10. When we fixed the number of labeled data,
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Fig. 9. Experimental results of correctness (should be maximized) for mixed-type datasets from UCI repository with varying
the number of features. The number of labeled data was fixed at 10 in each experiment. We performed SELF using both labeled
and unlabeled data (SELF) and using only labeled data (SELF (w/o)), Data show mean ± s.e.m.

we used all features for abalone, anneal, australian, crx, echocardiogram, heart, and hepatitis, and only
used features 1, 2, 3, 18, 20 in allbp, 1, 2, . . . , 6, 22, 22, . . . , 25 in arrhythmia, and 1, 2, 4, 5, . . . 11 in
horse colic, since we could not finish experiments in reasonable time for such dense datasets. The above
features seem to be representative for each dataset. Otherwise if we fixed the number of features, we ex-
amined two cases in which the number of labeled data for training were 10 or 100. Such small amount of
labeled data is typical in semi-supervised learning; for example, the numbers 10 and 100 were adopted
in benchmarks in the literature3 [50, §21].

To analyze effectivity of unlabeled data in the semi-supervised manner, we trained SELF in two ways;
one is using both labeled and the remaining all unlabeled data for training, and the other is using only la-
beled data for training without any unlabeled data. In the following, we denote “SELF” in the former case
and “SELF (w/o)” in the latter case. All experiments were carried out in the transductive setting [42],
that is, test data coincide with the unlabeled training data. This setting is common in empirical evaluation
of semi-supervised learning methods [50, §21].

For control, three learning algorithms were adopted: the decision tree-based classifier, SVM with the
RBF kernel, and the k nearest neighbor algorithm (k = 1 and 5). All the above algorithms are typical for
supervised learning and hence did not use unlabeled data in training.

Figures 4 and 5, 6 show the accuracy with respect to changes in the number of labeled data and the
number of features, respectively. In every case, the accuracy of SELF was much better than that of

3This content is available at http://olivier.chapelle.cc/ssl-book/benchmarks.pdf.
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Fig. 10. Experimental results of completeness (should be maximized) for mixed-type datasets from UCI repository with varying
the number of features. The number of labeled data was fixed at 10 in each experiment. We performed SELF using both labeled
and unlabeled data (SELF) and using only labeled data (SELF (w/o)), Data show mean ± s.e.m.

SELF (w/o), and the accuracy was getting better according as the number of labeled data increases.
Moreover, SELF’s performance is getting better with increase in the number of features. SELF therefore
can effectively use unlabeled data and features for learning.

In comparison with the tree algorithm which can treat mixed-type data directly, SELF showed better
performance in all datasets in Fig. 4. Moreover, compared to other learning algorithms of SVM and
kNN, SELF also achieved the best performance in abalone, anneal, and horse colic. When the number
of labeled data is small (about 10–40), SELF outperformed other learning algorithms in all datasets
except allbp, as shown in Figs 4 and 5.

4.2.2. Label ranking
We examined effectivity of SELF for label ranking. In consideration of the lack of benchmark data

for label ranking, we adopted the following procedure for label ranking: We trained SELF using all
labeled data on the respective dataset and obtained the ranking for each datum, and used them as the
ground truth. Literature [5,18] which studied label ranking used the naïve Bayes classifier to make the
ground truth of rankings from datasets. However, the mathematical theory is totally different from those
of SELF, hence their approach is not appropriate to our case.

Figures 7 and 8 show the results of label ranking by SELF with varying the number of labeled data,
and Figs 9–12 show those with respect to the number of features, where the number of labeled data
is 10 for Figs 9 and 10, and 100 for Figs 11 and 12. The correctness of SELF is better than SELF
(w/o) in abalone, and is similar between them in the other datasets for all conditions. In contrast, the
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Fig. 11. Experimental results of correctness (should be maximized) for mixed-type datasets from UCI repository with varying
the number of features. The number of labeled data was fixed at 100 in each experiment. We performed SELF using both labeled
and unlabeled data (SELF) and using only labeled data (SELF (w/o)), Data show mean ± s.e.m.

completeness of SELF is much higher than that of SELF (w/o) in most cases. The main reason might be
that lots of data are not classified to any class in SELF (w/o).

4.3. Discussion

Our experiments about classification (Figs 4, 5, 6) show that SELF has competitive performance com-
pared to other machine learning algorithms, where unlabeled data can be used effectively in training.
This result means that data clustering using the closed set lattices works well for semi-supervised learn-
ing of mixed-type data. Moreover, SELF can explicitly produce classification rules like the decision tree-
based algorithm, hence SELF’s results can be easily interpreted. Furthermore, in label ranking (Figs 7–
12), SELF outperformed SELF (w/o) in most cases in terms of completeness, and the performance got
higher with increase of the number of labeled data. Our results therefore show that unlabeled data are
also effectively used in SELF in the task of label ranking.

5. Conclusion

We have proposed a novel semi-supervised learning method, called SELF, for mixed-type data in-
cluding both discrete and continuous variables, and experimentally showed its competitive performance.
The key strategy is data clustering with closed set lattices using FCA, and the present study shows the
effectivity of the lattices in semi-supervised learning. To our best knowledge, this approach is the first
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Fig. 12. Experimental results of completeness (should be maximized) for mixed-type datasets from UCI repository with varying
the number of features. The number of labeled data was fixed at 100 in each experiment. We performed SELF using both labeled
and unlabeled data (SELF) and using only labeled data (SELF (w/o)), Data show mean ± s.e.m.

direct semi-supervised method for mixed-type data, and also the first one to exploit closed set lattices in
semi-supervised learning. Moreover, we can directly treat missing values on SELF, meaning that SELF
can be used for various practical datasets. To date, many semi-supervised learning methods use data
distribution and probabilities, whereas SELF uses only the algebraic structure of data without any back-
ground knowledge. Our results with lattice-based data analysis provide new insight to machine learning
and knowledge discovery.

There are two future works; one is analysis of SELF from FCA point of view. Refinement of dis-
cretization of continuous variables must have some connection with reduction of a context [14] since if
we extend a context by refining real-valued variables, the original attributes are removed by reduction.
Thereby analysis of mathematical connection between them is a future work. The other is theoreti-
cal analysis in the computational learning theory context. de Brecht and Yamamoto [3] have proposed
Alexandrov concept space for learning from positive data. Our proposed method might be an instance of
the study, since the concept lattice is similar to the Alexandrov space. Thus theoretical analysis of our
framework is also a future work.
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