June 16, 2014 Kyoto University Informatics Seminar

Distance-Based Outlier Detection via Sampling

ISIR, Osaka University Mahito Sugiyama

Overview

- Today's topic is outlier detection
 - studied in statistics, machine learning & data mining (unsupervised learning)
- Problem:

How can we find outliers efficiently (from massive data)?

 I will talk about recent advances in distance-based outlier detection methods

What is an Outlier (Anomaly) ?

- An outlier is "an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism" (by Hawkins, 1980)
 - There is no fixed mathematical definition

What is an Outlier (Anomaly) ?

- An outlier is "an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism" (by Hawkins, 1980)
 - There is no fixed mathematical definition
- Outliers appear everywhere:
 - Intrusions in network traffic
 - Credit card fraud
 - Defective products in industry
 - Medical diagnosis from X-ray images
- Outliers should be detected and removed
- Outliers can cause fake results in subsequent analysis

Distance-Based Outlier Detection

- The modern distance-based approach
 - A data point is an outlier, if its locality is sparsely populated [Aggrawal, 2013]
 - One of the most popular approaches in outlier detection
 - Distribution-free
 - Easily applicable for various types of data

Distance-Based Outlier Detection

- The modern distance-based approach
 - A data point is an outlier, if its locality is sparsely populated [Aggrawal, 2013]
 - One of the most popular approaches in outlier detection
 - Distribution-free
 - Easily applicable for various types of data
- See the following for other traditional model-based approaches, e.g., statistical tests or changes of variances
 - Aggarwal, C. C., Outlier Analysis, Springer (2013)
 - Kriegel, H.-P., Kröger, P., Zimak, A., Outlier Detection
 Techniques, Tutorial at SIGKDD2010 [Link]

The First Distance-Based Method

- Knorr and Ng were the first to formalize a distance-based outlier detection scheme
 - "Algorithms for mining distance-based outliers in large datasets", VLDB 1998
- Given a dataset X, an object $x \in X$ is a $DB(\alpha, \delta)$ -outlier if $|\{x' \in X \mid d(x, x') > \delta\}| \ge \alpha n$
- n = |X| (number of objects)
- $a, \delta \in \mathbb{R}$ ($o \le a \le 1$) are parameters

 $n = 10 \\ a = 0.9$

The First Distance-Based Method

- Knorr and Ng were the first to formalize a distance-based outlier detection scheme
 - "Algorithms for mining distance-based outliers in large datasets", VLDB 1998
- Given a dataset X, an object $x \in X$ is a $DB(\alpha, \delta)$ -outlier if $|\{x' \in X \mid d(x, x') > \delta\}| \ge \alpha n$
- n = |X| (number of objects)
- $a, \delta \in \mathbb{R}$ ($o \le a \le 1$) are parameters

The First Distance-Based Method

- Knorr and Ng were the first to formalize a distance-based outlier detection scheme
 - "Algorithms for mining distance-based outliers in large datasets", VLDB 1998
- Given a dataset X, an object $x \in X$ is a $DB(\alpha, \delta)$ -outlier if $|\{x' \in X \mid d(x, x') > \delta\}| \ge \alpha n$
- n = |X| (number of objects)
- $a, \delta \in \mathbb{R}$ ($o \le a \le 1$) are parameters

From Classification to Ranking

- Two drawbacks of $DB(\alpha, \delta)$ -outliers
 - 1. Setting the distance threshold δ is difficult in practice
 - Setting α is not so difficult since it is always close to 1
 - 2. The lack of a ranking of outliers
- Ramaswamy *et al.* proposed to measure the outlierness by the *k*th-nearest neighbor (*k*th-NN) distance
 - Ramaswamy, S., Rastogi, R., Shim, K., "Efficient algorithms for mining outliers from large data sets", SIGMOD 2000
 - The most basic distance-based approach to date

From Classification to Ranking

- Two drawbacks of $DB(\alpha, \delta)$ -outliers
 - 1. Setting the distance threshold δ is difficult in practice
 - Setting α is not so difficult since it is always close to 1
 - 2. The lack of a ranking of outliers
- Ramaswamy *et al.* proposed to measure the outlierness by the *k*th-nearest neighbor (*k*th-NN) distance
 - Ramaswamy, S., Rastogi, R., Shim, K., "Efficient algorithms for mining outliers from large data sets", SIGMOD 2000
 - The most basic distance-based approach to date
- From this study, the task of DB outlier detection becomes a ranking problem
 - do not perform binary classification

- The *k*th-NN score $q_{kthNN}(x) \coloneqq d^k(x;X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X

- The *k*th-NN score $q_{kthNN}(x) := d^k(x; X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X

- The *k*th-NN score $q_{kthNN}(x) := d^k(x; X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X

- The *k*th-NN score $q_{kthNN}(x) \coloneqq d^k(x;X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X

- The *k*th-NN score $q_{kthNN}(x) \coloneqq d^k(x;X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X

- The *k*th-NN score $q_{kthNN}(x) \coloneqq d^k(x;X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X

- The *k*th-NN score $q_{kthNN}(x) \coloneqq d^k(x;X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X

- The *k*th-NN score $q_{kthNN}(x) \coloneqq d^k(x;X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X

- The *k*th-NN score $q_{kthNN}(x) \coloneqq d^k(x;X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X

- The *k*th-NN score $q_{kthNN}(x) \coloneqq d^k(x;X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X

Connection with DB(α , δ)-Outliers

- The *k*th-NN score $q_{kthNN}(x) \coloneqq d^k(x; X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X
- Let a = (n k)/n
- For any threshold δ , the set of $DB(\alpha, \delta)$ -outliers = { $x \in X | q_{kthNN}(x) \ge \delta$ }

- **1.** Scalability; $O(n^2)$
 - Solution: Partial computation of the pairwise distances to compute scores only for the top-t outliers
 - ORCA [Bay & Schwabacher, SIGKDD 2003]
 - iORCA [Bhaduri et al., SIGKDD 2011]

1. Scalability; $O(n^2)$

- Solution: Partial computation of the pairwise distances to compute scores only for the top-t outliers
 - ORCA [Bay & Schwabacher, SIGKDD 2003]
 - iORCA [Bhaduri et al., SIGKDD 2011]

2. Detection ability

- **Solution:** Introduce other definitions of the outlierness
 - Density-based (LOF)
 [Breunig et al. SIGKDD 2000]
 - Angle-based (ABOD)
 [Kriegel et al. SIGKDD 2008]

1. Scalability; $O(n^2)$

- **Solution:** Partial computation of the pairwise distances to compute scores only for the top-*t* outliers
 - ORCA [Bay & Schwabacher, SIGKDD 2003]
 - iORCA [Bhaduri et al., SIGKDD 2011]

2. Detection ability

- Solution: Introduce other definitions of the outlierness
 - Density-based (LOF)
 [Breunig et al. SIGKDD 2000]
 - Angle-based (ABOD)
 [Kriegel et al. SIGKDD 2008]

Partial Computation for Efficiency

- The key technique in retrieving top-t outliers: Approximate Nearest Neighbor Search (ANNS) principle
 - During computing $q_{kthNN}(x)$ within a for loop: $q_{kthNN}(x) = \infty$ (k = 1 for simplicity) for each $x' \in X \setminus \{x\}$ if $d(x, x') < q_{kthNN}(x)$ $q_{kthNN}(x) = d(x, x')$

end if

end for

the current value $q_{kthNN}(x)$ is monotonically decreasing

- In the for loop, if q_{kthNN}(x) becomes smaller than the mth largest score so far, x never becomes an outlier
 - The for loop can be terminated earlier

Further Pruning with Indexing

- iORCA employed an indexing technique
 - Bhaduri, K., Matthews, B.L., Giannella, C.R., "Algorithms for speeding up distance-based outlier detection", SIGKDD 2011
- Select a point $r \in X$ randomly
 - This *r* is a reference point
- Re-order the dataset *X* with increasing distance from *r*
- If $d(x, r) + q_{kthNN}(r) < c$, x never be an outlier
 - c is the cutoff, the m-th largest score so far
- Drawback: the efficiency strongly depends on *m*

- 1. Scalability; $O(n^2)$
 - Solution: Partial computation of the pairwise distances to compute scores only for the top-t outliers
 - ORCA [Bay & Schwabacher, SIGKDD 2003]
 - iORCA [Bhaduri et al., SIGKDD 2011]
- 2. Detection ability
 - Solution: Introduce other definitions of the outlierness
 - Density-based (LOF)
 [Breunig et al. SIGKDD 2000]
 - Angle-based (ABOD)
 [Kriegel et al. SIGKDD 2008]

LOF (Local Outlier Factor)

- $N^{k}(x)$: the set of kNNs of x
- The reachability distance $Rd(x; x') := max \{ d^k(x', X), d(x, x') \}$
- The local reachability density is

$$\Delta(x) := \left(\frac{1}{|N^k(x)|} \sum_{x' \in N^k(x)} \operatorname{Rd}(x; x') \right)^{-1}$$

• The LOF of x is defined as $LOF(x) := \frac{\left(1/|N^{k}(x)|\right) \sum_{y \in N^{k}(x)} \Delta(y)}{\Delta(x)}$

 The ratio of the local reachability density of x and the average of the local reachability densities of its kNNs

LOF is Popular

- LOF is one of the most popular outlier detection methods
 - Easy to use (only one parameter k)
 - Higher detection ability than kth-NN
- For example, a ML library Jubatus (http://jubat.us/en/) supports LOF as an outlier detection technique
- The main drawback: scalability
 - $O(n^2)$ is needed for neighbor search
 - Same as kth-NN

Definition of ABOD

- If x is an outlier, the variance of angles between pairs of the remaining objects becomes small
- The score ABOF(x) := $Var_{y,z\in X}s(y-x,z-x)$
 - s(x, y) is the similarity between vectors x and y, for example,
 the cosine similarity
 - s(z x, y x) correlates with the angle of y and z w.r.t.
 the coordinate origin x
- Pros: Parameter-free
- Cons: High computational cost $O(n^3)$

Speeding Up ABOD

- Pham and Pagh proposed a speeded-up approximation algorithm FastVOA
 - Pham, N., Pagh, R., "A near-linear time approximation algorithm for angle-based outlier detection in high-dimensional data", SIGKDD 2012
 - It estimates the first and the second moment of the variance $Var_{y,z\in X}s(y x, z x)$ independently using random projections and AMS sketches
- Pros: near-linear complexity: $O(tn(m + \log n + c_1c_2))$
 - *t*: the number of hyperplanes for random projections
 - c_1, c_2 : the number of repetitions for AMS sketches
- Cons: Many parameters

Other Interesting Approaches

- iForest (isolation forest)
 - Liu, F.T. and Ting, K.M. and Zhou, Z.H., "Isolation forest", ICDM 2008 (Best Paper Runner-Up)
 - A random forest-like method with recursive partitioning of datasets
 - An outlier tends to be easily partitioned
- One-class SVM
 - Schölkopf, B. et al., "Estimating the support of a high-dimensional distribution", Neural computation (2001)
 - This classifies objects into inliers and outliers by introducing a hyperplane between them
 - This can be used as a ranking method by considering the signed distance to the separating hyperplane

iForest (Isolation Forest)

- Given *X*, we construct an *i*Tree:
 - 1. X is partitioned into X_L and X_R such that: $X_L = \{ x \in X \mid x_q < v \}, X_R = X \setminus X_L,$ where v and q are randomly chosen
 - 2. Recursively apply to each set until it becomes a singleton
 - Can be combined with sampling
- The outlierness score *i*Tree(x) is defined as $2^{-h(x)/c(\mu)}$
 - h(x) is the number of edges from the root to the leaf of x
 - $\overline{h(x)}$ is the average of h(x) on t iTrees
 - $c(\mu) := 2H(\mu 1) 2(\mu 1)/n$ (*H* is the harmonic number)

One-class SVM

- A technique via hyperplanes by Schölkopf et al.
- The score of a vector **x** is $\rho (w \cdot \Phi(\mathbf{x}))$
 - Φ: a feature map
 - w and ρ are the solution of the following quadratic program:

$$\min_{w\in F,\xi\in\mathbb{R}^n,\rho\in\mathbb{R}}\frac{1}{2}\|w\|^2+\frac{1}{\nu n}\sum_{i=1}^n\xi_i-\rho$$

subject to $(w \cdot \Phi(x_i)) \ge \rho - \xi_i, \ \xi_i \ge o$

- The term $w \cdot \Phi(\mathbf{x})$ can be replaced with $\sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x})$ using a kernel function k

Timeline

Timeline

(except for iForest)

Timeline

Outlier Detection via Sampling

- (Sub-)Sampling was largely ignored in outlier detection
 - Find outliers from samples seems hopeless
- We proposed to use samples as a reference set
 - Sugiyama, M., Borgwardt, K.M., "Rapid Distance-Based Outlier Detection via Sampling", NIPS 2013
 - Sample size is surprisingly small, which is sometimes 0.0001% of the total number of data points
 - Accuracy is competitive with state-of-the-art methods

Outlier Detection via Sampling

- (Sub-)Sampling was largely ignored in outlier detection
 - Find outliers from samples seems hopeless
- We proposed to use samples as a reference set
 - Sugiyama, M., Borgwardt, K.M., "Rapid Distance-Based Outlier Detection via Sampling", NIPS 2013
 - Sample size is surprisingly small, which is sometimes 0.0001% of the total number of data points
 - Accuracy is competitive with state-of-the-art methods
- Ensemble method with subsampling was also proposed:
 - Zimek, A. et al., "Subsampling for Efficient and Effective Unsupervised Outlier Detection Ensembles", SIGKDD 2013

Definition

- Given a dataset X (*n* data points, *m* dimensions)
- Randomly and independently sample a subset $S(X) \subset X$
- Define the score $q_{Sp}(x)$ for each object $x \in X$ as

$q_{\mathrm{Sp}}(x) \coloneqq \min_{x' \in S(X)} d(x, x')$

- Input parameter: the number of samples s = |S(X)|
- The time complexity is $\Theta(nms)$ and the space complexity is $\Theta(ms)$

Intuition

- Outliers should be significantly different from almost all inliers
 - \rightarrow A sample set includes only inliers with high probability \rightarrow Outliers get high scores
- For each inlier, at least one similar data point is included in the sample set with high probability

Intuition

- Outliers should be significantly different from almost all inliers
 - \rightarrow A sample set includes only inliers with high probability \rightarrow Outliers get high scores
- For each inlier, at least one similar data point is included in the sample set with high probability
- This scheme is expected to work with small sample sizes
 - If we pick up too many samples, some rare points, which is similar to an outlier, slip into the sample set

Experiments

- Examine state-of-the-art methods using synthetic and real-world datasets
 - Real data were collected from UCI repository
 - Points in the smallest class was assumed to be outliers
- Comparison partners:
 - *k*th-NN (iORCA), LOF, ABOD (FastVOA), iForest, one-class SVM, Wu and Jermaine's method
- Effectiveness was measured by AUPRC (area under the precision-recall curve)
 - Equivalent to the average precision over all possible cut-offs on the ranking of outlierness

	# of objects	# of outliers	# of dims
lonosphere	351	126	34
Arrhythmia	452	207	274
Wdbc	569	212	30
Mfeat	600	200	649
lsolet	960	240	617
Pima	768	268	8
Gaussian*	1000	30	1000
Optdigits	1688	554	64
Spambase	4601	1813	57
Statlog	6435	626	36
Skin	245057	50859	3
Pamap2	373161	125953	51
Covtype	286048	2747	10
Kdd1999	4898431	703067	б
Record	5734488	20887	7
Gaussian*	1000000	30	20

Sensitivity in sample sizes

- Interestingly, the effectiveness was maximized at a rather small sample size, 20
 - Monotonically decreased as the sample size increased further

Running Time (seconds)

AUPRC (* are best scores)

Average of AUPRC over all datasets

Other statistics

• RMSD: the root-mean-square deviation to the best scores, rewarding methods that are always close to the best result

Notations

- $X(\alpha; \delta)$: the set of Knorr and Ng's DB (α, δ) -outliers
- $x \in X(a; \delta)$ if $|\{x' \in X \mid d(x, x') > \delta\}| \ge an$
 - $\overline{X}(\alpha; \delta) = X \setminus X(\alpha; \delta)$: the set of inliers
 - α is expected to close to 1, meaning that an outlier is distant from almost all points
- Define β (o $\leq \beta \leq \alpha$) as the minimum value s.t.

$$\forall x \in \overline{X}(\alpha; \delta), \left| \{ x' \in X \mid d(x, x') > \delta \} \right| \le \beta n$$

Theoretical Results

1. For $x \in X(\alpha; \delta)$ and $x' \in \overline{X}(\alpha; \delta)$, $Pr(q_{Sp}(x) > q_{Sp}(x')) \ge \alpha^{s}(1 - \beta^{s})$

(s is the number of samples)

 This lower bound tends to be high in a typical setting (*α* is large, β is moderate)

2. This bound is maximized at $s = \log_{\beta} \frac{\log \alpha}{\log \alpha}$

- $-\log_{\beta} \frac{1}{\log \alpha + \log \beta}$
- This value tends to be small

How about High-dimensional Data ?

- So-called "the curse of dimensionality"
- There is an interesting paper that studies outlier detection in high-dimensional data
 - Zimek, A., Schubert, E., Kriegel, H.-P., "A survey on unsupervised outlier detection in high-dimensional numerical data", Statistical Analysis and Data Mining (2012)

Fact about High-Dimensional Data

- High-dimensionality is not always the problem
 - If all attributes are relevant, detecting outliers becomes easier and easier as attributes (dimensions) increases
 - Of course, it is not the case if irrelevant attributes exist

Conclusion

- Sampling is a powerful tool in outlier detection
- Sugiyama-Borgwardt method is
 - much (2 to 6 orders of magnitude) faster than exhaustive methods
 - the most effective on average
- Future work:
 - On-line outlier detection with updating samples
 - Apply to other data types
- Thanks to:

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Appendix

Evaluation criteria

- Precision v.s. Recall (Sensitivity)
 - Recall = TP / (TP + FN)
 - Precision = TP / (TP + FP)
- cf. ROC curve: False Positive Rate (FPR) v.s. Sensitivity
 - FPR = FP / (FP + TN) = 1 Specificity
 - Sensitivity = TP / (TP + FN)

Relationship

	Condition Positive	Condition Negative	
Test Outcome Positive	True Positive	False Positive (Type I Error)	Precision TP / (TP + FP)
Test Outcome Negative	False Negative (Type II Error)	True Negative	
	Sensitivity (Recall) TP / (TP + FN)	Specificity TN / (FP + TN) = 1 – FPR	
		False Positive Rate (FPR) FP / (FP + TN)	

Wu and Jermaine's method

- Define the score of x as $d^k(x; S_x(X))$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X
 - S_x(X) is a subset of X, which is randomly and iteratively sampled for each object x
- Closely related to our method when k = 1
 - our method performs sampling only once
 - Wu's method performs sampling per each object
- Wu, M., Jermaine, C., "Outlier detection by sampling with accuracy guarantees", SIGKDD 2006

More Detailed Analysis

- A δ -partition \mathcal{P}_{δ} of $\overline{X}(\alpha; \delta)$: $\forall C \in \mathcal{P}_{\delta}, \max_{x,y \in C} d(x, y) < \delta$ and $\bigcup_{C \in \mathcal{P}_{\delta}} C = \overline{X}(\alpha; \delta)$
- For an outlier $x \in X(\alpha; \delta)$ and a cluster $C \in \mathcal{P}_{\delta}$, $\Pr(\forall x' \in C, q_{Sp}(x) > q_{Sp}(x')) \ge \alpha^{s}(1-\beta^{s})$ with $\beta = (n-|C|)/n$
- Let $I(\alpha; \delta) \subset \overline{X}(\alpha; \delta)$ s.t. $\forall x \in X(\alpha; \delta)$, $\min_{x' \in I(\alpha; \delta)} d(x, x') > \delta$, $\mathcal{P}_{\delta} = \{C_1, \ldots, C_l\}$ be a δ -partition of $I(\alpha; \delta)$, and $p_i = |C_i|/|I(\alpha; \delta)|$ for each $i \in \{1, \ldots, I\}$
- Let $\varphi(s) = \sum_{\forall i; s_i \ge 0} f(s_1, \dots, s_l; \mu, p_1, \dots, p_l)$, where f is the probability mass function of the multinomial distribution, and $\gamma = |I(\alpha; \delta)|/n$. Then

 $\Pr(\forall x \in X(\alpha; \delta), \forall x' \in \overline{X}(\alpha; \delta), q_{Sp}(x) > q_{Sp}(x')) \ge \gamma^{s} \max_{\mathcal{P}_{\delta}} \varphi(s)$ A-4/A-4