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Overview

• Today’s topic is outlier detection
– studied in statistics, machine learning & data mining

(unsupervised learning)

• Problem:
How can we find outliers efficiently (from massive data) ?

• I will talk about recent advances in distance-based
outlier detection methods

How to �nd this?
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What is an Outlier (Anomaly) ?

• An outlier is “an observationwhich deviates somuch from
other observations as to arouse suspicions that itwas gen-
erated by a different mechanism” (by Hawkins, 1980)
– There is no fixed mathematical definition
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What is an Outlier (Anomaly) ?

• An outlier is “an observationwhich deviates somuch from
other observations as to arouse suspicions that itwas gen-
erated by a different mechanism” (by Hawkins, 1980)
– There is no fixed mathematical definition

• Outliers appear everywhere:
– Intrusions in network traffic
– Credit card fraud
– Defective products in industry
– Medical diagnosis from X-ray images

• Outliers should be detected and removed
• Outliers can cause fake results in subsequent analysis
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Distance-Based Outlier Detection

• The modern distance-based approach
– A data point is an outlier, if its locality is sparsely

populated [Aggrawal, 2013]
– One of the most popular approaches in outlier detection
◦ Distribution-free
◦ Easily applicable for various types of data
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Distance-Based Outlier Detection

• The modern distance-based approach
– A data point is an outlier, if its locality is sparsely

populated [Aggrawal, 2013]
– One of the most popular approaches in outlier detection
◦ Distribution-free
◦ Easily applicable for various types of data

• See the following for other traditional model-based
approaches, e.g., statistical tests or changes of variances
– Aggarwal, C. C., Outlier Analysis, Springer (2013)

– Kriegel, H.-P., Kröger, P., Zimak, A., Outlier Detection
Techniques, Tutorial at SIGKDD2010 [Link]
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The First Distance-Based Method

• Knorr and Ng were the first to formalize a distance-based
outlier detection scheme
– “Algorithms for mining distance-based outliers

in large datasets”, VLDB 1998

• Given a dataset X , an object x ∈ X is a DB(α, δ)-outlier if∣ { x ′ ∈ X ∣ d(x , x ′) > δ } ∣ ≥ αn
• n = ∣X ∣ (number of objects)

• α, δ ∈ R (0 ≤ α ≤ 1) are
parameters

α = 0.9
n = 10
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From Classification to Ranking

• Two drawbacks of DB(α, δ)-outliers
1. Setting the distance threshold δ is difficult in practice

– Setting α is not so difficult since it is always close to 1
2. The lack of a ranking of outliers

• Ramaswamy et al. proposed to measure the outlierness
by the kth-nearest neighbor (kth-NN) distance
– Ramaswamy, S., Rastogi, R., Shim, K., “Efficient algorithms for mining

outliers from large data sets”, SIGMOD 2000

– The most basic distance-based approach to date
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From Classification to Ranking

• Two drawbacks of DB(α, δ)-outliers
1. Setting the distance threshold δ is difficult in practice

– Setting α is not so difficult since it is always close to 1
2. The lack of a ranking of outliers

• Ramaswamy et al. proposed to measure the outlierness
by the kth-nearest neighbor (kth-NN) distance
– Ramaswamy, S., Rastogi, R., Shim, K., “Efficient algorithms for mining

outliers from large data sets”, SIGMOD 2000

– The most basic distance-based approach to date

• From this study, the task of DB outlier detection
becomes a ranking problem
– do not perform binary classification
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The kth-Nearest Neighbor Distance

• The kth-NN score qkthNN(x) ∶= dk(x ; X)
– d k (x ; X) is the distance between x and its kth-NN in X
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The kth-Nearest Neighbor Distance

• The kth-NN score qkthNN(x) ∶= dk(x ; X)
– d k (x ; X) is the distance between x and its kth-NN in X
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Connection with DB(α, δ)-Outliers

• The kth-NN score qkthNN(x) ∶= dk(x ; X)
– d k (x ; X) is the distance between x and its kth-NN in X

• Let α = (n − k)/n
• For any threshold δ,
the set of DB(α, δ)-outliers = {x ∈ X ∣ qkthNN(x) ≥ δ}
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TwoDrawbacks of the kth-NNApproach

1. Scalability; O(n2)
• Solution: Partial computation of the pairwise distances
to compute scores only for the top-t outliers
– ORCA [Bay & Schwabacher, SIGKDD 2003]
– iORCA [Bhaduri et al., SIGKDD 2011]
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Partial Computation for Efficiency

• The key technique in retrieving top-t outliers:
Approximate Nearest Neighbor Search (ANNS) principle
– During computing qkthNN(x)within a for loop:

qkthNN(x) = ∞ (k = 1 for simplicity)
for each x ′ ∈ X \ {x}
if d(x , x ′) < qkthNN(x)

qkthNN(x) = d(x , x ′)
end if

end for
the current value qkthNN(x) is monotonically decreasing

• In thefor loop, if qkthNN(x)becomes smaller than themth
largest score so far, x never becomes an outlier
– The for loop can be terminated earlier
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Further Pruning with Indexing

• iORCA employed an indexing technique
– Bhaduri, K., Matthews, B.L., Giannella, C.R., “Algorithms for speeding

up distance-based outlier detection”, SIGKDD 2011

• Select a point r ∈ X randomly
– This r is a reference point

• Re-order the dataset X with increasing distance from r
• If d(x , r) + qkthNN(r) < c, x never be an outlier
– c is the cutoff, the m-th largest score so far

• Drawback: the efficiency strongly depends on m
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LOF (Local Outlier Factor)

• Nk(x): the set of kNNs of x

• The reachabilitydistanceRd(x ; x ′) ∶= max { dk(x ′ , X), d(x , x ′) }
• The local reachability density is

∆(x) ∶= ⎛⎜⎝ 1∣Nk(x)∣ ∑
x ′∈Nk (x)Rd(x ; x ′) ⎞⎟⎠

−1

• The LOF of x is defined as

LOF(x) ∶= ( 1/∣Nk(x)∣ ) ∑y∈Nk (x) ∆(y)
∆(x)

• The ratio of the local reachability density of x and the average of
the local reachability densities of its kNNs
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LOF is Popular

• LOF is one of the most popular outlier detection methods
– Easy to use (only one parameter k)
– Higher detection ability than kth-NN

• For example, a ML library Jubatus (http://jubat.us/en/)
supports LOF as an outlier detection technique

• The main drawback: scalability
– O(n2) is needed for neighbor search
– Same as kth-NN
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ABOD (Angle-Based Outlier Detection)

• If x is an outlier, the variance of angles between pairs of
the remaining objects becomes small
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• If x is an outlier, the variance of angles between pairs of
the remaining objects becomes small
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Definition of ABOD

• If x is an outlier, the variance of angles between pairs of
the remaining objects becomes small

• The score ABOF(x) ∶= Vary ,z∈X s(y − x , z − x)
– s(x , y) is the similarity between vectors x and y, for example,

the cosine similarity
– s(z − x , y − x) correlates with the angle of y and z w.r.t.

the coordinate origin x

• Pros: Parameter-free
• Cons: High computational cost O(n3)
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Speeding Up ABOD

• Pham and Pagh proposed a speeded-up approximation
algorithm FastVOA
– Pham, N., Pagh, R., “A near-linear time approximation algorithm

for angle-based outlier detection in high-dimensional data”,
SIGKDD 2012

– It estimates the first and the second moment of the variance
Vary ,z∈X s(y − x , z − x) independently using
random projections and AMS sketches

• Pros: near-linear complexity: O(tn(m + log n + c1c2))
– t: the number of hyperplanes for random projections
– c1 , c2 : the number of repetitions for AMS sketches

• Cons: Many parameters
16/36



Other Interesting Approaches

• iForest (isolation forest)
– Liu, F.T. and Ting, K.M. and Zhou, Z.H., “Isolation forest”, ICDM 2008

(Best Paper Runner-Up)

– A random forest-like method
with recursive partitioning of datasets

– An outlier tends to be easily partitioned

• One-class SVM
– Schölkopf, B. et al., “Estimating the support of a high-dimensional dis-

tribution”, Neural computation (2001)

– This classifies objects into inliers and outliers
by introducing a hyperplane between them

– This can be used as a ranking method by considering
the signed distance to the separating hyperplane
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iForest (Isolation Forest)

• Given X , we construct an iTree:
1. X is partitioned into XL and XR such that:

XL = { x ∈ X ∣ xq < v }, XR = X \ XL ,
where v and q are randomly chosen

2. Recursively apply to each set until it becomes a singleton
– Can be combined with sampling

• The outlierness score iTree(x) is defined as 2−h(x)/c(µ)
– h(x) is the number of edges from the root to the leaf of x

– h(x) is the average of h(x) on t iTrees
– c(µ) ∶= 2H(µ − 1) − 2(µ − 1)/n (H is the harmonic number)
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One-class SVM

• A technique via hyperplanes by Schölkopf et al.
• The score of a vector x is ρ − (w ⋅ Φ(x))
– Φ: a feature map
– w and ρ are the solution of the following quadratic program:

min
w∈F ,ξ∈Rn ,ρ∈R

1
2∥w∥2 + 1

νn

n

∑
i=1

ξ i − ρ

subject to (w ⋅ Φ(x i )) ≥ ρ − ξ i , ξ i ≥ 0
– The term w ⋅ Φ(x) can be replaced with∑n

i=1 α ik(xi , x)
using a kernel function k
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Timeline

Distance-based

kth-NN ORCA iORCA

LOF (density)
ABOD
(angle)

FastVOA

one-class SVM (hyperplane)

iForest (random forest)

2000 2005 2010 2014
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Timeline

Distance-based

kth-NN ORCA iORCA

LOF (density)
ABOD
(angle)

FastVOA

one-class SVM (hyperplane)

iForest (random forest)

2000 2005 2010 2014

The common drawback: Scalability
(except for iForest)
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Timeline

Distance-based

kth-NN ORCA iORCA

LOF (density)
ABOD
(angle)

FastVOA

one-class SVM (hyperplane)

iForest (random forest)

2000 2005 2010 2014

Sampling
(Sugiyama-Borgwardt)
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Outlier Detection via Sampling

• (Sub-)Sampling was largely ignored in outlier detection
– Find outliers from samples seems hopeless

• We proposed to use samples as a reference set
– Sugiyama, M., Borgwardt, K.M., “Rapid Distance-Based Outlier

Detection via Sampling”, NIPS 2013

– Sample size is surprisingly small, which is sometimes 0.0001%
of the total number of data points

– Accuracy is competitive with state-of-the-art methods
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• (Sub-)Sampling was largely ignored in outlier detection
– Find outliers from samples seems hopeless

• We proposed to use samples as a reference set
– Sugiyama, M., Borgwardt, K.M., “Rapid Distance-Based Outlier

Detection via Sampling”, NIPS 2013

– Sample size is surprisingly small, which is sometimes 0.0001%
of the total number of data points

– Accuracy is competitive with state-of-the-art methods

• Ensemble method with subsampling was also proposed:
– Zimek, A. et al., “Subsampling for Efficient and Effective Unsupervised

Outlier Detection Ensembles”, SIGKDD 2013
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Sugiyama-Borgwardt Method
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Definition

• Given a dataset X (n data points, m dimensions)
• Randomly and independently sample a subset S(X) ⊂ X
• Define the score qSp(x) for each object x ∈ X as
qSp(x) ∶= min

x ′∈S(X) d(x , x ′)
– Input parameter: the number of samples s = ∣S(X)∣
– The time complexity is Θ(nms) and

the space complexity is Θ(ms)
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Intuition

• Outliers should be significantly different from
almost all inliers
→ A sample set includes only inliers with high probability
→ Outliers get high scores

• For each inlier, at least one similar data point is included
in the sample set with high probability
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Intuition

• Outliers should be significantly different from
almost all inliers
→ A sample set includes only inliers with high probability
→ Outliers get high scores

• For each inlier, at least one similar data point is included
in the sample set with high probability

• This scheme is expected to work
with small sample sizes
– If we pick up too many samples,

some rare points, which is similar to
an outlier, slip into the sample set Samples
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Experiments

• Examine state-of-the-art methods using
synthetic and real-world datasets
– Real data were collected from UCI repository
– Points in the smallest class was assumed to be outliers

• Comparison partners:
– kth-NN (iORCA), LOF, ABOD (FastVOA), iForest, one-class SVM,

Wu and Jermaine’s method

• Effectiveness was measured by AUPRC
(area under the precision-recall curve)
– Equivalent to the average precision over all possible cut-offs

on the ranking of outlierness
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Datasets (* are synthetic)

# of outliers

Ionosphere 351

# of objects # of dims

126
Arrhythmia 452 207 274
Wdbc 569 212
Mfeat 600 200
Isolet 960 240
Pima 768 268
Gaussian* 1000 30
Optdigits 1688 554
Spambase 4601 1813
Statlog 6435 626
Skin 245057 50859
Pamap2 373161 125953
Covtype 286048 2747
Kdd1999 4898431 703067
Record 5734488 20887
Gaussian* 10000000 30

34

30
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8
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3
51
10

6
7

20
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Sensitivity in sample sizes

Number of samples
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• Interestingly, the effectiveness was maximized
at a rather small sample size, 20
– Monotonically decreased as the sample size increased further
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Running Time (seconds)
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AUPRC (* are best scores)
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Average of AUPRC over all datasets
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Other statistics

Bad

Good

kth
-N

N
LOF

FastV
OA

SVM
Wu’s

0

A
ve

ra
ge

 ra
nk

1

2

3

4

5

6

Ours
LOF

FastV
OA

SVM
Wu’s

Ours

RM
SD

0

0.05

0.10

0.15

0.2

0.25

iForest

iForest

kth
-N

N

• RMSD: the root-mean-square deviation to the best scores,
rewarding methods that are always close to the best result
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Notations

• X(α; δ): the set of Knorr and Ng’s DB(α, δ)-outliers
• x ∈ X(α; δ) if ∣{ x ′ ∈ X ∣ d(x , x ′) > δ }∣ ≥ αn
– X(α; δ) = X \ X(α; δ): the set of inliers
– α is expected to close to 1, meaning that an outlier is distant

from almost all points

• Define β (0 ≤ β ≤ α) as the minimum value s.t.

∀x ∈ X(α; δ), »»»»»»{ x ′ ∈ X ∣ d(x , x ′) > δ }»»»»»» ≤ βn
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Theoretical Results

1. For x ∈ X(α; δ) and x ′ ∈ X(α; δ),
Pr(qSp(x) > qSp(x ′) ) ≥ αs(1 − βs)
(s is the number of samples)
• This lower bound tends to be high
in a typical setting
(α is large, β is moderate)

2. This bound is maximized at

s = logβ
log α

log α + log β
• This value tends to be small
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How about High-dimensional Data ?

• So-called “the curse of dimensionality”
• There is an interesting paper that studies outlier detection
in high-dimensional data
– Zimek, A., Schubert, E., Kriegel, H.-P., “A survey onunsupervisedoutlier

detection inhigh-dimensional numerical data”, Statistical Analysis and
Data Mining (2012)
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Fact about High-Dimensional Data

• High-dimensionality is not always the problem
– If all attributes are relevant, detecting outliers becomes easier

and easier as attributes (dimensions) increases
– Of course, it is not the case if irrelevant attributes exist

Dimensionality

Sc
or
e

Outliers
Inliers

35/36



Conclusion

• Sampling is a powerful tool in outlier detection
• Sugiyama-Borgwardt method is
– much (2 to 6 orders of magnitude) faster

than exhaustive methods
– the most effective on average

• Future work:
– On-line outlier detection with updating samples
– Apply to other data types

• Thanks to:

MLCB
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Evaluation criteria

• Precision v.s. Recall (Sensitivity)
– Recall = TP / (TP + FN)
– Precision = TP / (TP + FP)

• cf. ROC curve: False Positive Rate (FPR) v.s. Sensitivity
– FPR = FP / (FP + TN) = 1 − Specificity
– Sensitivity = TP / (TP + FN)
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Relationship

True Positive

Sensitivity
(Recall)

TP / (TP + FN)

Speci�city
TN / (FP + TN) = 1 – FPR

False Positive Rate (FPR)
FP / (FP + TN)

False Positive
(Type I Error)

False Negative
(Type II Error) True Negative

Ground truth

Precision
TP / (TP + FP)

Test Outcome
Positive

Test Outcome
Negative

Condition
Positive

Condition
Negative
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Wu and Jermaine’s method

• Define the score of x as dk(x ; Sx (X))
– d k (x ; X) is the distance between x and its kth-NN in X
– Sx (X) is a subset of X , which is randomly and iteratively

sampled for each object x

• Closely related to our method when k = 1
– our method performs sampling only once
– Wu’s method performs sampling per each object

• Wu, M., Jermaine, C., “Outlier detection by sampling with accuracy guar-
antees”, SIGKDD 2006
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More Detailed Analysis

• A δ-partition Pδ of X(α; δ):
∀C ∈ Pδ ,maxx ,y∈C d(x , y) < δ and⋃C∈Pδ

C = X(α; δ)
• For an outlier x ∈ X(α; δ) and a cluster C ∈ Pδ ,
Pr(∀x ′ ∈ C , qSp(x) > qSp(x ′) ) ≥ αs(1−βs)with β = (n−∣C∣)/n

• Let I(α; δ) ⊂ X(α; δ) s.t. ∀x ∈ X(α; δ), minx ′∈I(α ;δ) d(x , x ′) >
δ, Pδ = {C1 , . . . , C l } be a δ-partition of I(α; δ), and p i =∣C i ∣/∣I(α; δ)∣ for each i ∈ {1, . . . , l}

• Let ϕ(s) = ∑∀i ; s i⪈0 f (s1 , . . . , s l ; µ, p1 , . . . , p l ), where f is the
probability mass function of themultinomial distribution,
and γ = ∣I(α; δ)∣/n. Then

Pr(∀x ∈ X(α; δ),∀x ′ ∈ X(α; δ), qSp(x) > qSp(x ′) ) ≥ γs max
Pδ

ϕ(s)
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