October 19, 2017 Kyoto University Informatics Seminar

Inter-University Research Institute Corporation / Research Organization of Information and Systems

National Institute of Informatics

Information Geometric Analysis on Partial Order Structures

Mahito Sugiyama (NII, JST PRESTO)

Slide Is Available

http://mahito.info/files/Sugiyama_KU_InfoSeminar_2017.pdf

Outline

- Introduction to Pattern mining & Boltzmann machines
- Information geometric formulation
- Projection in statistical manifold
- Application to Matrix balancing
- Conclusion

Outline

- Introduction to Pattern mining & Boltzmann machines
- Information geometric formulation
- Projection in statistical manifold
- Application to Matrix balancing
- Conclusion

Pattern Mining

Frequency as Importance Measure

Probability on Poset

Pattern Mining → Upward Analysis

Boltzmann Machines

Boltzmann Machines → **Downward Analysis**

Pattern Mining & Boltzmann Machines

Outline

- Introduction to Pattern mining & Boltzmann machines
- Information geometric formulation
- Projection in statistical manifold
- Application to Matrix balancing
- Conclusion

Partially Ordered Set

- Partially ordered set (poset) (S, \leq)
 - (i) $x \le x$ (reflexivity)
 - (ii) $x \le y, y \le x \Rightarrow x = y$ (antisymmetry)
 - (iii) $x \le y, y \le z \Rightarrow x \le z$ (transitivity)
 - We assume that S is finite and includes the least element (bottom) $\perp \in S$
- Equivalent to a DAG
 - Each $x \in S$ is a node
 - $x \le y \iff y$ is reachable from x

Log-Linear Model on Poset

- A probability vector $p:S \rightarrow (0, 1)$ s.t. $\sum_{x \in S} p(x) = 1$
 - (Normalized) weight for each node
- We introduce $\theta: S \to \mathbb{R}$ and $\eta: S \to \mathbb{R}$ as $\log p(x) = \sum_{s \le x} \theta(s),$ $\eta(x) = \sum_{s \ge x} p(s)$

Our Model Includes Binary Case

• Our model: $\log p(x) = \sum \theta(s), \quad \eta(x) = \sum p(s)$ s < xs≥x is generalization of the log-linear model on binary vectors with $\mathbf{x} \in \{0, 1\}^n = S$: $\log p(\mathbf{x}) = \sum_{i} \theta^{i} x^{i} + \sum_{i \leq i} \theta^{ij} x^{i} x^{j} + \dots$ $+ \theta^{1\dots n} x^1 x^2 \dots x^n - \psi$ $\eta^{i} = \mathbf{E}[x^{i}] = \Pr(x^{i} = 1),$ $\eta^{ij} = \mathbf{E}[x^i x^j] = \Pr(x^i = x^j = 1), \dots$ 15/40

Dually Flat Structure

- θ and η form a dual coordinate system:
 - $\nabla \psi(\theta) = \eta, \ \nabla \varphi(\eta) = \theta$
 - $\psi(\theta) = -\theta(\bot) = -\log p(\bot), \ \varphi(\eta) = \sum_{x \in S} p(x) \log p(x)$
 - $\psi(\theta)$ and $\varphi(\eta)$ are connected via the Legendre transformation: $\varphi(\eta) = \max_{\theta'} \left(\theta' \eta - \psi(\theta') \right), \quad \theta' \eta = \sum_{x \in S \setminus \{\bot\}} \theta'(x) \eta(x)$ $\circ \psi(\theta)$ and $\varphi(\eta)$ should be convex

Gradient and Riemannian Manifold

• The gradients: $g(\theta) = \nabla \nabla \psi(\theta) = \nabla \eta$, $g(\eta) = \nabla \nabla \varphi(\eta) = \nabla \theta$

$$\begin{cases} g_{xy}(\theta) = \frac{\partial \eta(x)}{\partial \theta(y)} = \sum_{s \in S} \zeta(x, s) \zeta(y, s) p(s) - \eta(x) \eta(y) \\ g_{xy}(\eta) = \frac{\partial \theta(x)}{\partial \eta(y)} = \sum_{s \in S} \mu(s, x) \mu(s, y) p(s)^{-1} \end{cases}$$

- ζ and μ are the zeta function and the Möbius function determined by the partial order (DAG) structure
- The manifold $(\mathcal{S}, g(\xi))$ is a Riemannian manifold with the set \mathcal{S} of probability vectors and the Riemannian metric $g(\xi) = 17/40$

Fisher Information Matrix and Orthogonality

• Since $g(\xi)$ coincides with the Fisher information matrix,

$$\mathbf{E}\left[\frac{\partial}{\partial\theta(x)}\log p(s)\frac{\partial}{\partial\theta(y)}\log p(s)\right] = g_{xy}(\theta),$$
$$\mathbf{E}\left[\frac{\partial}{\partial\eta(x)}\log p(s)\frac{\partial}{\partial\eta(y)}\log p(s)\right] = g_{xy}(\eta)$$

• θ and η are orthogonal, i.e.,

$$\mathbf{E}\left[\frac{\partial}{\partial\theta(x)}\log p(s)\frac{\partial}{\partial\eta(y)}\log p(s)\right] = \sum_{s\in S}\zeta(x,s)\mu(s,y) = \delta_{xy}$$

Möbius Function on Poset

- Zeta function $\zeta: S \times S \rightarrow \{0, 1\}$ $\zeta(s, x) = \begin{cases} 1 & \text{if } s \leq x, \\ 0 & \text{otherwise.} \end{cases}$
- Möbius function μ : $S \times S \rightarrow \mathbb{Z}$

$$\mu(x, y) = \begin{cases} 1 & \text{if } x = y, \\ -\sum_{x \le s < y} \mu(x, s) & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

– We have $\zeta \mu = I$ (convolutional inverse):

$$\sum_{s\in S} \zeta(s, y)\mu(x, s) = \sum_{x\leq s\leq y} \mu(x, s) = \delta_{xy}$$
19/40

Möbius Function Is Generalization of Inclusion-Exclusion Principle

- For sets A, B, C, $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$
- In general, for A_1, A_2, \ldots, A_n ,

$$\left|\bigcup_{i} A_{i}\right| = \sum_{J \subseteq \{1, \dots, n\}, J \neq \emptyset} (-1)^{|J|-1} \left|\bigcap_{j \in J} A_{j}\right|$$

• The Möbius function μ is the generalization of " $(-1)^{|J|-1}$ "

Outline

- Introduction to Pattern mining & Boltzmann machines
- Information geometric formulation
- Projection in statistical manifold
- Application to Matrix balancing
- Conclusion

e-Projection and *m*-Projection

e-Projection and m-Projection

e-Projection and m-Projection

Computation of *e*-Projection

• Given *P* and β , we compute P_{β} such that

$$\begin{cases} \theta_{P_{\beta}}(x) = \theta_{P}(x) & \text{if } x \in (S \setminus \{\bot\}) \setminus \text{dom}(\beta), \\ \eta_{P_{\beta}}(x) = \beta(x) & \text{if } x \in \text{dom}(\beta) \end{cases}$$

• Initialize with
$$P_{\beta}^{(o)} = P$$
 and, at each step t ,
update $\eta_{P_{\beta}}^{(t)}(x)$ for $x \in \text{dom}(\beta)$

- Since θ and η are orthogonal, we can change $\eta_{P_{\beta}}^{(t)}(x)$ while fixing $\theta_{P_{\beta}}^{(t)}(y)$ for $y \notin \text{dom}(\beta)$

Gradient

- We can use Newton's method as we can compute the derivatives $\partial \theta^{(t)}(x) / \partial \eta^{(t)}(y)$ and $\partial \eta^{(t)}(x) / \partial \theta^{(t)}(y)$, thanks to the Möbius inversion
- Gradient of θ and η is obtained as the Riemannian metric: $g(\theta) = \nabla \nabla \psi(\theta) = \nabla \eta$ and $g(\eta) = \nabla \nabla \varphi(\eta) = \nabla \theta$ $\frac{\partial \eta(x)}{\partial \theta(y)} = \sum_{s \in S} \zeta(x, s)\zeta(y, s)p(s) - \eta(x)\eta(y),$ $\frac{\partial \theta(x)}{\partial \eta(y)} = \sum_{s \in S} \mu(s, x)\mu(s, y)p(s)^{-1}$

Newton's Method (1/2)

• Each step of Newton's method:

$$\begin{bmatrix} \mathbf{i} \\ \mathbf{\eta}_{P_{\beta}}^{(t)}(\mathbf{x}) - \beta(\mathbf{x}) \\ \vdots \end{bmatrix} + J \begin{bmatrix} \vdots \\ \theta_{P_{\beta}}^{(t+1)}(\mathbf{y}) - \theta_{P_{\beta}}^{(t)}(\mathbf{y}) \\ \vdots \end{bmatrix} = \mathbf{0},$$

- J is the $|dom(\beta)| \times |dom(\beta)|$ Jacobian matrix given as

$$J_{xy} = \frac{\partial \eta_{P_{\beta}}^{(t)}(x)}{\partial \theta_{P_{\beta}}^{(t)}(y)} = \sum_{s \in S} \zeta(x, s) \zeta(y, s) p_{\beta}^{(t)}(s) - \eta_{P_{\beta}}^{(t)}(x) \eta_{P_{\beta}}^{(t)}(y)$$

for each $x, y \in \text{dom}(\beta)$

Newton's Method (2/2)

• Each update is

$$\begin{bmatrix} \vdots \\ \theta_{P_{\beta}}^{(t+1)}(x) \\ \vdots \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ \theta_{P_{\beta}}^{(t)}(x) \\ \vdots \\ \vdots \end{bmatrix} - J^{-1} \begin{bmatrix} \vdots \\ \eta_{P_{\beta}}^{(t)}(y) - \beta(y) \\ \vdots \end{bmatrix}$$

- J^{-1} is the inverse of J
- J is the $|dom(\beta)| \times |dom(\beta)|$ Jacobian matrix given as

$$J_{xy} = \frac{\partial \eta_{P_{\beta}}^{(t)}(x)}{\partial \theta_{P_{\beta}}^{(t)}(y)} = \sum_{s \in S} \zeta(x, s) \zeta(y, s) p_{\beta}^{(t)}(s) - \eta_{P_{\beta}}^{(t)}(x) \eta_{P_{\beta}}^{(t)}(y)$$

for each $x, y \in dom(\beta)$

Outline

- Introduction to Pattern mining & Boltzmann machines
- Information geometric formulation
- Projection in statistical manifold
- Application to Matrix balancing
- Conclusion

Matrix Balancing

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

Matrix Balancing

Matrix Balancing

• Problem setting: Given a nonnegative matrix $P = (p_{ij}) \in \mathbb{R}^{n \times n}_+$, find $r, s \in \mathbb{R}^n$ s.t.

(RPS)**1** = **1** and $(RPS)^{T}$ **1** = **1**

- R = diag(r), S = diag(s)
- Each entry is given as $p'_{ij} = p_{ij}r_is_j$
- A fundamental process to analyze and compare matrices in a wide range of applications
 - Input-output analysis in economics, seat assignments in elections, Hi-C data analysis, Sudoku puzzle
 - Approximate Wasserstein distance

Results on Hessenberg Matrix

Overview of Our Approach

View Matrix as Poset

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix} \xrightarrow{p_{11} \rightarrow p_{12} \rightarrow p_{13} \rightarrow p_{14}} \xrightarrow{p_{14} \rightarrow p_{12} \rightarrow p_{13} \rightarrow p_{23} \rightarrow p_{24}} \xrightarrow{p_{24} \rightarrow p_{21} \rightarrow p_{22} \rightarrow p_{23} \rightarrow p_{24}} \xrightarrow{p_{14} \rightarrow p_{21} \rightarrow p_{22} \rightarrow p_{23} \rightarrow p_{24}} \xrightarrow{p_{14} \rightarrow p_{21} \rightarrow p_{22} \rightarrow p_{23} \rightarrow p_{24}} \xrightarrow{p_{24} \rightarrow p_{21} \rightarrow p_{22} \rightarrow p_{23} \rightarrow p_{24}} \xrightarrow{p_{31} \rightarrow p_{32} \rightarrow p_{33} \rightarrow p_{34}} \xrightarrow{p_{34} \rightarrow p_{34} \rightarrow$$

 $p_{41} \rightarrow p_{42} \rightarrow p_{43} \rightarrow p_{44}$

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

Matrix balancing is achieved if: $\eta_{11} = 4, \eta_{21} = 3, \eta_{31} = 2, \eta_{41} = 1$ $\eta_{11} = 4, \eta_{12} = 3, \eta_{13} = 2, \eta_{14} = 1$

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

Matrix balancing is achieved if: $\eta_{11} = 4, \eta_{21} = 3, \eta_{31} = 2, \eta_{41} = 1$ $\eta_{11} = 4, \eta_{12} = 3, \eta_{13} = 2, \eta_{14} = 1$

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

Matrix balancing is achieved if: $\eta_{11} = 4, \eta_{21} = 3, \eta_{31} = 2, \eta_{41} = 1$ $\eta_{11} = 4, \eta_{12} = 3, \eta_{13} = 2, \eta_{14} = 1$

$$\begin{array}{c} \eta_{11} \rightarrow \eta_{12} \rightarrow \eta_{13} \rightarrow \eta_{14} \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \eta_{21} \rightarrow \theta_{22} \rightarrow \theta_{23} \rightarrow \theta_{24} \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \eta_{31} \rightarrow \theta_{32} \rightarrow \theta_{33} \rightarrow \theta_{34} \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \eta_{41} \rightarrow \theta_{42} \rightarrow \theta_{43} \rightarrow \theta_{44} \end{array}$$

Introduce **\theta** and **\eta**

Matrix balancing is achieved if: $\eta_{11} = 4, \eta_{21} = 3, \eta_{31} = 2, \eta_{41} = 1$ $\eta_{11} = 4, \eta_{12} = 3, \eta_{13} = 2, \eta_{14} = 1$

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

Matrix balancing is achieved if: $\eta_{11} = 4, \eta_{21} = 3, \eta_{31} = 2, \eta_{41} = 1$ $\eta_{11} = 4, \eta_{12} = 3, \eta_{13} = 2, \eta_{14} = 1$

e-Projection = Balancing

p₄₁ p₄₂ p₄₃ p₄₄

Matrix balancing is achieved if: $\eta_{11} = 4, \eta_{21} = 3, \eta_{31} = 2, \eta_{41} = 1$ $\eta_{11} = 4, \eta_{12} = 3, \eta_{13} = 2, \eta_{14} = 1$

$$\begin{array}{c} \eta_{11} & \eta_{12} & \eta_{13} & \eta_{14} \\ & & & & & & \\ \eta_{21} & \theta_{22} & \theta_{23} & \theta_{24} \\ & & & & & & \\ \eta_{31} & \theta_{32} & \theta_{33} & \theta_{34} \\ & & & & & & \\ \eta_{41} & \theta_{42} & \theta_{43} & \theta_{44} \end{array}$$

$$\begin{array}{c} \theta_{42} & \theta_{43} & \theta_{44} \\ \end{array}$$

$$\begin{array}{c} \theta_{42} & \theta_{43} & \theta_{44} \\ \end{array}$$

e-Projection = Balancing

Outline

- Introduction to Pattern mining & Boltzmann machines
- Information geometric formulation
- Projection in statistical manifold
- Application to Matrix balancing
- Conclusion

Conclusion

- Information geometric formulation connects pattern mining and Boltzmann machines
- Applications including matrix balancing
- Discrete structure (posets) + Information Geometry = Strong formulation for data analysis!

Source

• This slide:

http://mahito.info/files/Sugiyama_KU_InfoSeminar_2017.pdf

- Sugiyama, M., Nakahara, H., Tsuda, K.: Tensor Balancing on Statistical Manifold, ICML 2017
 - arXiv: https://arxiv.org/abs/1702.08142
 - GitHub: https://github.com/mahito-sugiyama/newton-balancing
- Sugiyama, M., Nakahara, H., Tsuda, K.: Information Decomposition on Structured Space, IEEE ISIT 2016
 - arXiv: http://arxiv.org/abs/1601.05533