February 4, 2019

Inter-University Research Institute Corporation / Research Organization of Information and Systems

National Institute of Informatics

Machine Learning and Information Geometry II

Introduction to Intelligent Systems Science II

Mahito Sugiyama

Various Hierarchical Models as Posets

Pattern Mining

Frequency as Importance Measure

Probability on Poset

Pattern Mining → Upward Analysis

Boltzmann Machines

Boltzmann Machines → **Downward Analysis**

Pattern Mining & Boltzmann Machines

Partially Ordered Set

- Partially ordered set (poset) (S, ≤)
 - (i) $x \le x$ (reflexivity)
 - (ii) $x \le y, y \le x \Rightarrow x = y$ (antisymmetry)
 - (iii) $x \le y, y \le z \Rightarrow x \le z$ (transitivity)
 - We assume that S is finite and includes the least element (bottom) $\perp \in S$
- Equivalent to a DAG
 - Each $x \in S$ is a node
 - $x \le y \iff y$ is reachable from x

Log-Linear Model on Poset

- A probability vector $p: S \rightarrow (0, 1)$ s.t. $\sum_{x \in S} p(x) = 1$
 - (Normalized) weight for each node
- We introduce $\theta: S \to \mathbb{R}$ and $\eta: S \to \mathbb{R}$ as $\theta(x) = \sum_{s \in S} \mu(s, x) \log p(s), \ \eta(x) = \sum_{s \ge x} p(s)$
- From the Möbius inversion formula: $\log p(x) = \sum_{s \le x} \theta(s), \ p(x) = \sum_{s \in S} \mu(x, s) \eta(s)$ 10/34

Möbius Function on Poset

• Zeta function
$$\zeta: S \times S \rightarrow \{0, 1\}$$

 $\zeta(s, x) = \begin{cases} 1 & \text{if } s \leq x, \\ 0 & \text{otherwise.} \end{cases}$

Möbius function
$$\mu: S \times S \rightarrow \mathbb{Z}$$
 $\mu(x, y) = \begin{cases} 1 & \text{if } x = y, \\ -\sum_{x \le s < y} \mu(x, s) & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$

– We have $\zeta \mu = I$ (convolutional inverse):

$$\sum_{s \in S} \zeta(s, y) \mu(x, s) = \sum_{x \le s \le y} \mu(x, s) = \delta_{xy}$$
11/34

Dually Flat Structure

- θ and η form a dual coordinate system:
 - $\nabla \psi(\theta) = \eta, \ \nabla \varphi(\eta) = \theta$
 - $\psi(\theta) = -\theta(\bot) = -\log p(\bot), \ \varphi(\eta) = \sum_{x \in S} p(x) \log p(x)$
 - $\psi(\theta)$ and $\varphi(\eta)$ are connected via the Legendre transformation: $\varphi(\eta) = \max_{\theta'} \left(\theta' \eta - \psi(\theta') \right), \quad \theta' \eta = \sum_{x \in S \setminus \{\bot\}} \theta'(x) \eta(x)$

• $\psi(\theta)$ and $\varphi(\eta)$ should be convex

Gradient and Riemannian Manifold

• The gradients: $g(\theta) = \nabla \nabla \psi(\theta) = \nabla \eta$, $g(\eta) = \nabla \nabla \varphi(\eta) = \nabla \theta$

$$\begin{cases} g_{xy}(\theta) = \frac{\partial \eta(x)}{\partial \theta(y)} = \sum_{s \in S} \zeta(x, s)\zeta(y, s)p(s) - \eta(x)\eta(y) \\ g_{xy}(\eta) = \frac{\partial \theta(x)}{\partial \eta(y)} = \sum_{s \in S} \mu(s, x)\mu(s, y)p(s)^{-1} \end{cases}$$

- ζ and μ are the zeta function and the Möbius function determined by the partial order (DAG) structure
- The manifold (S, $g(\xi)$) is a Riemannian manifold with the set S of probability vectors and the Riemannian metric $g(\xi) = 13/34$

Fisher Information Matrix and Orthogonality

• Since $g(\xi)$ coincides with the Fisher information matrix,

$$\mathbf{E}\left[\frac{\partial}{\partial\theta(x)}\log p(s)\frac{\partial}{\partial\theta(y)}\log p(s)\right] = g_{xy}(\theta),$$
$$\mathbf{E}\left[\frac{\partial}{\partial\eta(x)}\log p(s)\frac{\partial}{\partial\eta(y)}\log p(s)\right] = g_{xy}(\eta)$$

• θ and η are orthogonal, i.e.,

$$\mathbf{E}\left[\frac{\partial}{\partial\theta(x)}\log p(s)\frac{\partial}{\partial\eta(y)}\log p(s)\right] = \sum_{s\in S}\zeta(x,s)\mu(s,y) = \delta_{xy}$$

e-Projection and m-Projection

15/34

e-Projection and m-Projection

15/34

e-Projection and m-Projection

Computation of *e*-Projection

• Given *P* and β , we compute P_{β} such that

$$\begin{cases} \theta_{P_{\beta}}(x) = \theta_{P}(x) & \text{if } x \in (S \setminus \{\bot\}) \setminus \text{dom}(\beta), \\ \eta_{P_{\beta}}(x) = \beta(x) & \text{if } x \in \text{dom}(\beta) \end{cases}$$

• Initialize with
$$P_{\beta}^{(o)} = P$$
 and, at each step t ,
update $\eta_{P_{\beta}}^{(t)}(x)$ for $x \in \text{dom}(\beta)$

- Since θ and η are orthogonal, we can change $\eta_{P_{\beta}}^{(t)}(x)$ while fixing $\theta_{P_{\beta}}^{(t)}(y)$ for $y \notin \text{dom}(\beta)$

Gradient

- We can use Newton's method as we can compute the derivatives $\partial \theta^{(t)}(x) / \partial \eta^{(t)}(y)$ and $\partial \eta^{(t)}(x) / \partial \theta^{(t)}(y)$, thanks to the Möbius inversion
- Gradient of θ and η is obtained as the Riemannian metric: $g(\theta) = \nabla \nabla \psi(\theta) = \nabla \eta$ and $g(\eta) = \nabla \nabla \varphi(\eta) = \nabla \theta$ $\frac{\partial \eta(x)}{\partial \theta(y)} = \sum_{s \in S} \zeta(x, s)\zeta(y, s)p(s) - \eta(x)\eta(y),$ $\frac{\partial \theta(x)}{\partial \eta(y)} = \sum_{s \in S} \mu(s, x)\mu(s, y)p(s)^{-1}$

Newton's Method (1/2)

• Each step of Newton's method:

$$\begin{bmatrix} \eta_{P_{\beta}}^{(t)}(x) - \beta(x) \\ \vdots \end{bmatrix} + J \begin{bmatrix} \vdots \\ \theta_{P_{\beta}}^{(t+1)}(y) - \theta_{P_{\beta}}^{(t)}(y) \\ \vdots \end{bmatrix} = \mathbf{o},$$

- J is the $|dom(\beta)| \times |dom(\beta)|$ Jacobian matrix given as

$$J_{xy} = \frac{\partial \eta_{P_{\beta}}^{(t)}(x)}{\partial \theta_{P_{\beta}}^{(t)}(y)} = \sum_{s \in S} \zeta(x, s) \zeta(y, s) p_{\beta}^{(t)}(s) - \eta_{P_{\beta}}^{(t)}(x) \eta_{P_{\beta}}^{(t)}(y)$$

for each $x, y \in \text{dom}(\beta)$

Newton's Method (2/2)

• Each update is

$$\begin{bmatrix} \theta_{P_{\beta}}^{(t+1)}(x) \\ \vdots \\ \vdots \end{bmatrix} = \begin{bmatrix} \theta_{P_{\beta}}^{(t)}(x) \\ \vdots \\ \vdots \end{bmatrix} - J^{-1} \begin{bmatrix} \vdots \\ \eta_{P_{\beta}}^{(t)}(y) - \beta(y) \\ \vdots \end{bmatrix}$$

- J^{-1} is the inverse of J
- J is the $|dom(\beta)| \times |dom(\beta)|$ Jacobian matrix given as

$$J_{xy} = \frac{\partial \eta_{P_{\beta}}^{(t)}(x)}{\partial \theta_{P_{\beta}}^{(t)}(y)} = \sum_{s \in S} \zeta(x, s) \zeta(y, s) p_{\beta}^{(t)}(s) - \eta_{P_{\beta}}^{(t)}(x) \eta_{P_{\beta}}^{(t)}(y)$$

for each $x, y \in dom(\beta)$

CP Decomposition

- Approximate a tensor \mathcal{X} by R rank-1 tensors: $x_{ijk} \approx \sum_{r=1}^{R} u_{ir} v_{jr} w_{kr}$
 - Number of parameters $IJK \rightarrow R(I + J + K)$

Tucker Decomposition

- Approximate a tensor \mathcal{X} by three matrices and a core tensor: $x_{ijk} \approx \sum_{r=1}^{R} \sum_{s=1}^{S} \sum_{t=1}^{T} c_{rst} u_{ir} v_{js} w_{kt}$
 - Number of parameters $IJK \rightarrow RST + IR + JS + KT$

From Matrix to Poset (DAG)

Input matrix:

Information Geometry

33/34

Information Geometry

Summary of Lectrue

- Information geometric formulation connects
 pattern mining and Boltzmann machines
 - Applications including matrix balancing
 - Sugiyama, M., Nakahara, H., Tsuda, K.:
 Tensor Balancing on Statistical Manifold, ICML 2017
- Discrete structure (posets) + Information Geometry = Strong formulation for data analysis!
- Further application to tensor decomposition:
 - Sugiyama, M., Nakahara, H., Tsuda, K.:
 Legendre Decomposition for Tensors, NeurIPS 2018