Machine Learning for Graph Structured Data

Introduction to Big Data Science（ビッグデータ概論）
Mahito Sugiyama（杉山麿人）

Example of Learning from Data

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

- 1,2, 4, 7, ...
- What are succeeding numbers?

Example of Learning from Data

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

- 1,2, 4, 7, ...
- What are succeeding numbers?

$$
1,2,4,7,11,16, \ldots \quad\left(a_{n}=a_{n-1}+n-1\right)
$$

Example of Learning from Data

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

- $1,2,4,7, \ldots$
- What are succeeding numbers?

$$
\begin{array}{ll}
1,2,4,7,11,16, \ldots & \left(a_{n}=a_{n-1}+n-1\right) \\
1,2,4,7,12,20, \ldots & \left(a_{n}=a_{n-1}+a_{n-2}+1\right)
\end{array}
$$

Example of Learning from Data

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

- 1,2,4,7,...
- What are succeeding numbers?

$$
\begin{array}{ll}
1,2,4,7,11,16, \ldots & \left(a_{n}=a_{n-1}+n-1\right) \\
1,2,4,7,12,20, \ldots & \left(a_{n}=a_{n-1}+a_{n-2}+1\right) \\
1,2,4,7,13,24, \ldots & \left(a_{n}=a_{n-1}+a_{n-2}+a_{n-3}\right)
\end{array}
$$

Example of Learning from Data

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

- 1, 2, 4, 7, ...
- What are succeeding numbers?

$$
\begin{array}{ll}
1,2,4,7,11,16, \ldots & \left(a_{n}=a_{n-1}+n-1\right) \\
1,2,4,7,12,20, \ldots & \left(a_{n}=a_{n-1}+a_{n-2}+1\right) \\
1,2,4,7,13,24, \ldots & \left(a_{n}=a_{n-1}+a_{n-2}+a_{n-3}\right)
\end{array}
$$

1,2,4, 7, 14, $28 \quad$ (divisors of 28)

Example of Learning from Data

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

- 1,2, 4, 7, ...
- What are succeeding numbers?

$$
\begin{array}{ll}
1,2,4,7,11,16, \ldots & \left(a_{n}=a_{n-1}+n-1\right) \\
1,2,4,7,12,20, \ldots & \left(a_{n}=a_{n-1}+a_{n-2}+1\right) \\
1,2,4,7,13,24, \ldots & \left(a_{n}=a_{n-1}+a_{n-2}+a_{n-3}\right) \\
1,2,4,7,14,28 & \text { (divisors of 28) } \\
1,2,4,7,1,1,5, \ldots & \text { (decimals of } \pi=3.1415 \ldots, e=2.718 \ldots)
\end{array}
$$

Example of Learning from Data

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

- 1,2, 4, 7, ...
- What are succeeding numbers?

$$
\begin{array}{ll}
1,2,4,7,11,16, \ldots & \left(a_{n}=a_{n-1}+n-1\right) \\
1,2,4,7,12,20, \ldots & \left(a_{n}=a_{n-1}+a_{n-2}+1\right) \\
1,2,4,7,13,24, \ldots & \left(a_{n}=a_{n-1}+a_{n-2}+a_{n-3}\right) \\
1,2,4,7,14,28 & \text { (divisors of 28) } \\
1,2,4,7,1,1,5, \ldots & \text { (decimals of } \pi=3.1415 \ldots, e=2.718 \ldots)
\end{array}
$$

- 1107 results (!) in the online encyclopedia (https : / /oeis .org/)

Analyze Learning as Scientific Problem

- Which is the correct answer (or generalization) for succeeding numbers of $1,2,4,7, \ldots$?
- Any answer is possible!

Analyze Learning as Scientific Problem

- Which is the correct answer (or generalization) for succeeding numbers of $1,2,4,7, \ldots$?
- Any answer is possible!
- We should take two points into consideration:
(i) We need to formalize the problem of "learning"
- There are two agents (teacher and learner) in learning, which are different from "computation"
(ii) Learning is an infinite process
- A learner usually never knows that the current hypothesis is perfectly correct

Learning of Binary Classifier

Learning of Binary Classifier

Example: Perceptron (by F. Rosenblatt, 1958)

- Learning target: two subsets $F, G \subseteq \mathbb{R}^{d}$ s.t. $F \cap G=\varnothing$
- Assumption: F and G are linearly separable
- There exists a function (classifier) $f_{*}(\boldsymbol{x})=\left\langle\boldsymbol{w}_{*}, \boldsymbol{x}\right\rangle+b$ s.t. $f_{*}(\boldsymbol{x})>0 \quad \forall \boldsymbol{x} \in F, \quad f_{*}(\boldsymbol{x})<0 \quad \forall \boldsymbol{x} \in G$

Example: Perceptron (by F. Rosenblatt, 1958)

- Learning target: two subsets $F, G \subseteq \mathbb{R}^{d}$ s.t. $F \cap G=\varnothing$
- Assumption: F and G are linearly separable
- There exists a function (classifier) $f_{*}(\boldsymbol{x})=\left\langle\boldsymbol{w}_{*}, \boldsymbol{x}\right\rangle+b$ s.t. $f_{*}(\boldsymbol{x})>0 \quad \forall \boldsymbol{x} \in F, \quad f_{*}(\boldsymbol{x})<0 \quad \forall \boldsymbol{x} \in G$
- Hypotheses: hyperplanes on \mathbb{R}^{d}
- If we consider a linear equation $f(\boldsymbol{x})=\langle\boldsymbol{w}, \boldsymbol{x}\rangle+b$, each line can be uniquely specified by a pair of two parameters ($\boldsymbol{w}, \boldsymbol{b}$) (hypothesis)

Example: Perceptron (by F. Rosenblatt, 1958)

- Learning target: two subsets $F, G \subseteq \mathbb{R}^{d}$ s.t. $F \cap G=\varnothing$
- Assumption: F and G are linearly separable
- There exists a function (classifier) $f_{*}(\boldsymbol{x})=\left\langle\boldsymbol{w}_{*}, \boldsymbol{x}\right\rangle+b$ s.t.

$$
f_{*}(\boldsymbol{x})>0 \quad \forall \boldsymbol{x} \in F, \quad f_{*}(\boldsymbol{x})<0 \quad \forall \boldsymbol{x} \in G
$$

- Hypotheses: hyperplanes on \mathbb{R}^{d}
- If we consider a linear equation $f(\boldsymbol{x})=\langle\boldsymbol{w}, \boldsymbol{x}\rangle+b$, each line can be uniquely specified by a pair of two parameters ($\boldsymbol{w}, \boldsymbol{b}$) (hypothesis)
- Data: a sequence of pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$
- $\left(\boldsymbol{x}_{i}, y_{i}\right)$: (a real-valued vector in \mathbb{R}^{d}, a label)
- $x_{i} \in F \cup G, y_{i} \in\{1,-1\}$, and $y_{i}=1\left(y_{i}=-1\right)$ if $x_{i} \in F\left(x_{i} \in G\right)$

Learning Model for Perceptron

Learning Procedure of Perceptron

1. $\boldsymbol{w} \leftarrow 0, b \leftarrow 0$ (or a small random value)
// initialization
2. for $i=1,2,3, \ldots$ do
3. Receive i-th pair $\left(\boldsymbol{x}_{i}, y_{i}\right)$
4. Compute $a=\sum_{j=1}^{d} w^{j} x_{i}^{j}+b$
5. if $y_{i} \cdot a<0$ then
6. $\boldsymbol{w} \leftarrow \boldsymbol{w}+y_{i} \boldsymbol{x}_{i}$
7. $\quad b \leftarrow b+y_{i}$
8. end if
9. end for

Correctness of Perceptron

- It is guaranteed that a perceptron always converges to a correct classifier
- A correct classifier is a function f s.t.

$$
\begin{array}{ll}
f(\boldsymbol{x})>0 & \forall \boldsymbol{x} \in F, \\
f(\boldsymbol{x})<0 & \forall \boldsymbol{x} \in G
\end{array}
$$

- The convergence theorem
- Note: there are (infinitely) many functions that correctly classify F and G
- A perceptron converges to one of them

Summary: Perceptron

Target	Two disjoint subsets of \mathbb{R}^{d}
Representation	Two parameters (\boldsymbol{w}, b) of linear
	equation $f(\boldsymbol{x})=\langle\boldsymbol{w}, \boldsymbol{x}\rangle+b$
Data	Real vectors from target subsets
Algorithm	Perceptron
Correctness	Convergence theorem

Support Vector Machines (SVMs)

- A dataset D is separable by $f \Longleftrightarrow y_{i} f\left(\boldsymbol{x}_{i}\right)>0, \forall i \in\{1,2, \ldots, n\}$
- The margin is the distance from the classification hyperplane to the closest data point
- Support vector machines (SVMs) tries to find a hyperplane that maximize the margin

Margin

Formulation of SVMs

- The distance from a point \boldsymbol{x}_{i} to a hyperplane $f(\boldsymbol{x})=\langle\boldsymbol{w}, \boldsymbol{x}\rangle+w_{0}$ is

$$
\frac{\left|f\left(\boldsymbol{x}_{i}\right)\right|}{\|\boldsymbol{w}\|}=\frac{\left|\left\langle\boldsymbol{w}, \boldsymbol{x}_{i}\right\rangle+w_{0}\right|}{\|\boldsymbol{w}\|}
$$

- Since $y_{i} f\left(\boldsymbol{x}_{i}\right)>0$ should be satisfied, assume that there exists $M>0$ such that $y_{i} f\left(\boldsymbol{x}_{i}\right) \geq M$ for all $i \in\{1,2, \ldots, n\}$
- The margin maximization problem can be written as

$$
\begin{aligned}
& \max _{\boldsymbol{w}, w_{0}, M} \frac{M}{\|\boldsymbol{w}\|} \quad \text { subject to } y_{i} f\left(\boldsymbol{x}_{i}\right) \geq M, i \in\{1,2, \ldots, n\} \\
& -M=\min _{i \in\{\{, 2, \ldots, n\}}\left|\left\langle\boldsymbol{w}, x_{i}\right\rangle+w_{0}\right|
\end{aligned}
$$

Hard Margin SVMs

- We can eliminate M and obtain

$$
\max _{\boldsymbol{w}, w_{0}} \frac{1}{\|\boldsymbol{w}\|} \quad \text { subject to } y_{i} f\left(\boldsymbol{x}_{i}\right) \geq 1, i \in\{1,2, \ldots, n\}
$$

- This is equivalent to

$$
\min _{w, w_{0}}\|\boldsymbol{w}\|^{2} \quad \text { subject to } y_{i} f\left(\boldsymbol{x}_{i}\right) \geq 1, i \in\{1,2, \ldots, n\}
$$

- The standard formulation of hard margin SVMs
- There are data points x_{i} satisfying $y_{i} f\left(\boldsymbol{x}_{i}\right)=1$, called support vectors
- The solution does not change even data points that are not support vectors are removed

Margin

Soft Margin

- Datasets are not often separable
- Extend SV classification to soft margin by relaxing $\langle\boldsymbol{w}, \boldsymbol{x}\rangle+w_{0} \geq 1$
- Change the constraint $y_{i} f\left(\boldsymbol{x}_{i}\right) \geq 1$ using the slack variable ξ_{i} to

$$
y_{i} f\left(\boldsymbol{x}_{i}\right)=y_{i}\left(\langle\boldsymbol{w}, \boldsymbol{x}\rangle+w_{0}\right) \geq 1-\xi_{i}, \quad i \in\{1,2, \ldots, n\}
$$

- The formulation of soft margin SVM (C-SVM) is

$$
\min _{w, w_{0}, \xi} \frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i \in\{1,2, \ldots, n\}} \xi_{i} \quad \text { s.t. } y_{i} f\left(\boldsymbol{x}_{i}\right) \geq 1-\xi_{i}, \xi_{i} \geq 0, i \in\{1,2, \ldots, n\}
$$

- C is called the regularization parameter

Soft Margin

C is large

C is small

Data Point Location

- $y_{i} f\left(\boldsymbol{x}_{i}\right)>1: \boldsymbol{x}_{i}$ is outside margin
- These points do not affect to the classification hyperplane
- $y_{i} f\left(\boldsymbol{x}_{i}\right)=1: \boldsymbol{x}_{i}$ is on margin
- $y_{i} f\left(\boldsymbol{x}_{i}\right)<1: \boldsymbol{x}_{i}$ is inside margin
- These points do not exist in hard margin
- Points on margin and inside margin are support vectors

Dual Problem (1/4)

- The formulation of C-SVM

$$
\min _{\boldsymbol{w}, w_{0}, \xi} \frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i \in\{1,2, \ldots, n\}} \xi_{i} \quad \text { s.t. } y_{i} f\left(\boldsymbol{x}_{i}\right) \geq 1-\xi_{i}, \xi_{i} \geq 0, i \in\{1,2, \ldots, n\}
$$ is called the primal problem

- This is usually solved via the dual problem
- Make the Lagrange function using $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right), \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$:

$$
\begin{aligned}
& L\left(\boldsymbol{w}, w_{0}, \boldsymbol{\xi}, \boldsymbol{a}, \boldsymbol{\mu}\right)=\frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i \in[n]} \xi_{i}-\sum_{i \in[n]} a_{i}\left(y_{i} f\left(\boldsymbol{x}_{i}\right)-1+\xi_{i}\right)-\sum_{i \in[n]} \mu_{i} \xi_{i} \\
& \quad-[n]=\{1,2, \ldots, n\}
\end{aligned}
$$

Dual Problem (2/4)

- Let us consider

$$
D(\boldsymbol{\alpha}, \boldsymbol{\mu})=\min _{\boldsymbol{w}, w_{0}, \boldsymbol{\xi}} L\left(\boldsymbol{w}, w_{0}, \boldsymbol{\xi}, \boldsymbol{a}, \boldsymbol{\mu}\right)
$$

and its maximization

$$
\max _{\boldsymbol{a} \geq 0, \boldsymbol{\mu} \geq 0} D(\boldsymbol{a}, \boldsymbol{\mu})=\max _{\boldsymbol{a} \geq 0, \boldsymbol{\mu} \geq 0} \min _{w, w_{0}, \xi} L\left(\boldsymbol{w}, w_{0}, \boldsymbol{\xi}, \boldsymbol{a}, \boldsymbol{\mu}\right)
$$

- The inside minimization is achieved when

$$
\frac{\partial L}{\partial w}=w-\sum_{i \in[n]} a_{i} y_{i} \boldsymbol{x}_{i}=0, \frac{\partial L}{\partial w_{0}}=-\sum_{i \in[n]} a_{i} y_{i}=0, \frac{\partial L}{\partial \xi_{i}}=C-a_{i}-\mu_{i}=0
$$

Dual Problem (3/4)

- Putting the three conditions to the Lagrange function to remove \boldsymbol{w}, w_{0}, and $\boldsymbol{\xi}$, yielding

$$
\begin{aligned}
L & =\frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i \in[n]} \xi_{i}-\sum_{i \in[n]} a_{i}\left(y_{i} f\left(\boldsymbol{x}_{i}\right)-1+\xi_{i}\right)-\sum_{i \in[n]} \mu_{i} \xi_{i} \\
& =\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{i \in[n]} a_{i} y_{i}\left\langle\boldsymbol{w}, \boldsymbol{x}_{i}\right\rangle-w_{0} \sum_{i \in[n]} a_{i} y_{i}+\sum_{i \in[n]} a_{i}+\sum_{i \in[n]}\left(C-a_{i}-\mu_{i}\right) \xi_{i} \\
& =-\frac{1}{2} \sum_{i, j \in[n]} a_{i} a_{j} y_{i} y_{j}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle+\sum_{i \in[n]} a_{i}
\end{aligned}
$$

Dual Problem (4/4)

- It can be proved that $\max _{\boldsymbol{a} \geq 0, \boldsymbol{\mu} \geq 0} \min _{\boldsymbol{w}, w_{0}, \boldsymbol{\xi}} L\left(\boldsymbol{w}, w_{0}, \boldsymbol{\xi}, \boldsymbol{a}, \boldsymbol{\mu}\right)$, that is, the dual problem

$$
\max _{a}-\frac{1}{2} \sum_{i, j \in[n]} a_{i} a_{j} y_{i} y_{j}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle+\sum_{i \in[n]} a_{i} \quad \text { s.t. } \sum_{i \in[n]} a_{i} y_{i}=0,0 \leq a_{i} \leq C, i \in[n]
$$

is equivalent to the primal problem

$$
\min _{\boldsymbol{w}, w_{0}, \xi} \frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i \in\{1,2, \ldots, n\}} \xi_{i} \quad \text { s.t. } y_{i} f\left(\boldsymbol{x}_{i}\right) \geq 1-\xi_{i}, \xi_{i} \geq 0, i \in[n]
$$

KKT (Karush-Kuhn-Tucker) condition

- The necessary conditions for a solution to be optimal:

$$
\begin{aligned}
& \frac{\partial L}{\partial w}=w-\sum_{i \in[n]} a_{i} y_{i} \boldsymbol{x}_{i}=0, \frac{\partial L}{\partial w_{0}}=-\sum_{i \in[n]} a_{i} y_{i}=0, \frac{\partial L}{\partial \xi_{i}}=C-a_{i}-\mu_{i}=0 \\
& -\left(y_{i} f\left(\boldsymbol{x}_{i}\right)-1+\xi_{i}\right) \leq 0,-\xi_{i} \leq 0, \\
& a_{i} \geq 0, \mu_{i} \geq 0, \\
& a_{i}\left(y_{i} f\left(\boldsymbol{x}_{i}\right)-1-\xi_{i}\right)=0, \mu_{i} \xi_{i}=0, \\
& i \in[n]
\end{aligned}
$$

Recovering Primal Variables

- Using these conditions, from the optimal \boldsymbol{a}, we have

$$
f(\boldsymbol{x})=\sum_{i \in[n]} a_{i} y_{i}\left\langle\mathbf{x}_{i}, \boldsymbol{x}\right\rangle+w_{o},
$$

$$
w_{o}=y_{i}-\sum_{j \in[n]} a_{j} y_{j}\left\langle\mathbf{x}_{j}, \boldsymbol{x}_{i}\right\rangle, \quad \forall i \in\left\{i \in[n] \mid 0<a_{i}<C\right\}
$$

- Since the second condition holds for all $i \in\left\{i \in[n] \mid 0<a_{i}<C\right\}$, one can take the average to avoid numerical errors

Data Point Location

- $y_{i} f\left(\boldsymbol{x}_{i}\right)>1 \Longleftrightarrow a_{i}=0: \boldsymbol{x}_{i}$ is outside margin
- These points do not affect to the classification hyperplane
- $y_{i} f\left(\boldsymbol{x}_{i}\right)=1 \Longleftrightarrow 0<a_{i}<C: \boldsymbol{x}_{i}$ is on margin
- $y_{i} f\left(\boldsymbol{x}_{i}\right)<1 \Longleftrightarrow a_{i}=C: \boldsymbol{x}_{i}$ is inside margin
- These points do not exist in hard margin
- Points on margin and inside margin are support vectors

How to Solve?

- The (dual) problem:
$\max _{\boldsymbol{a}}-\frac{1}{2} \boldsymbol{a}^{\top} Q \boldsymbol{a}+1^{\top} \boldsymbol{a} \quad$ s.t. $\boldsymbol{y}^{\top} \boldsymbol{a}=0,0 \leq \boldsymbol{a} \leq C 1$
$-Q \in \mathbb{R}^{n \times n}$ is the matrix such that $q_{i j}=y_{i} y_{j}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle$
- Since analytical solution is not available, iterative approach for continuous optimization with constraints is needed
- One of standard methods is the active set method

Active Set Method

- Divide the set [n] of indices into three sets:

$$
\begin{aligned}
O & =\left\{i \in[n] \mid a_{i}=0\right\} \\
M & =\left\{i \in[n] \mid 0<a_{i}<C\right\} \\
I & =\left\{i \in[n] \mid a_{i}=C\right\}
\end{aligned}
$$

- O and I are called active sets
- The problem can be solved w.r.t. $i \in M$, yielding

$$
\left[\begin{array}{cc}
Q_{M} & \boldsymbol{y}_{M} \\
\boldsymbol{y}_{M}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
a_{M} \\
v
\end{array}\right]=-C\left[\begin{array}{cc}
Q_{M, I} & \mathbf{1} \\
\mathbf{1}^{T} & \boldsymbol{y}_{l}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{1} \\
0
\end{array}\right]
$$

- This can be directly solved if Q_{M} is positive definite

Algorithm 1: Active Set Method
1 activeSetMethod(D)
2 Initialize M, I, O
$3 \quad$ while there exists i s.t. $y_{i} f\left(\boldsymbol{x}_{i}\right)<1, i \in O$ or $y_{i} f\left(\boldsymbol{x}_{i}\right)>1, i \in I$ do
$4 \quad$ Update M, I, O repeat
$\boldsymbol{a}_{M}^{\text {new }} \leftarrow$ the solution of the above equation
$\boldsymbol{d} \leftarrow \boldsymbol{a}_{M}^{\text {new }}-\boldsymbol{a}_{M}$
$\boldsymbol{a}_{M} \leftarrow \boldsymbol{a}_{M}+\eta \boldsymbol{d} ; \quad / /$ the maximum η satisfying
$\boldsymbol{a}_{M} \in[0, C]^{|M|}$
Move $i \in M$ from M to $/$ or O if $a_{i}=C$ or $a_{i}=0$

Extension to Nonlinear Classification

- To achieve nonlinear classification, convert each data point \boldsymbol{x} to some point $\varphi(\boldsymbol{x})$, and $f(\boldsymbol{x})$ becomes

$$
f(\boldsymbol{x})=\langle\boldsymbol{w}, \varphi(\boldsymbol{x})\rangle+w_{0}
$$

- The dual problem becomes

$$
\max _{a}-\frac{1}{2} \sum_{i, j \in[n]} a_{i} a_{j} y_{i} y_{j}\left\langle\varphi\left(\boldsymbol{x}_{i}\right), \varphi\left(\boldsymbol{x}_{j}\right)\right\rangle+\sum_{i \in[n]} a_{i} \text { s.t. } \sum_{i \in[n]} a_{i} y_{i}=0,0 \leq a_{i} \leq C, i \in[n]
$$

- Only the dot product $\left\langle\varphi\left(\boldsymbol{x}_{i}\right), \varphi\left(\boldsymbol{x}_{j}\right)\right\rangle$ is used!
- We do not even need to know $\varphi\left(\boldsymbol{x}_{i}\right)$ and $\varphi\left(\boldsymbol{x}_{j}\right)$
- Kernel function: $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left\langle\varphi\left(\boldsymbol{x}_{i}\right), \varphi\left(\boldsymbol{x}_{j}\right)\right\rangle$

C-SVM with Kernel Trick

- Using the kernel function K, we have
$\max _{\boldsymbol{a}}-\frac{1}{2} \sum_{i, j \in[n]} a_{i} a_{j} y_{i} y_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)+\sum_{i \in[n]} a_{i}$ s.t. $\sum_{i \in[n]} a_{i} y_{i}=0,0 \leq a_{i} \leq C, i \in[n]$
- The technique of using K is called kernel trick

Positive Definite Kernel

- A kernel $K: \Omega \times \Omega \rightarrow \mathbb{R}$ is a positive definite kernel if
(i) $K(x, y)=K(y, x)$
(ii) For $x_{1}, x_{2}, \ldots, x_{n}$, the $n \times n$ matrix

$$
\left(K_{i j}\right)=\left[\begin{array}{cccc}
K\left(x_{1}, x_{1}\right) & K\left(x_{2}, x_{1}\right) & \ldots & K\left(x_{n}, x_{1}\right) \\
K\left(x_{1}, x_{2}\right) & K\left(x_{2}, x_{2}\right) & \ldots & K\left(x_{n}, x_{2}\right) \\
\ldots & \ldots & \ldots & \ldots \\
K\left(x_{1}, x_{n}\right) & K\left(x_{2}, x_{n}\right) & \ldots & K\left(x_{n}, x_{n}\right)
\end{array}\right]
$$

is positive (semi-)definite, that is, $\sum_{i, j=1}^{n} c_{i} c_{j} K\left(x_{i}, x_{j}\right) \geq 0$ for any $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{R}$

- $\left(K_{i j}\right) \in \mathbb{R}^{n \times n}$ is called the Gram matrix

Popular Positive Definite Kernels

- Linear Kernel

$$
K(x, y)=\langle\boldsymbol{x}, \boldsymbol{y}\rangle
$$

- Gaussian (RBF) kernel

$$
K(\boldsymbol{x}, \boldsymbol{y})=\exp \left(-\frac{1}{\sigma^{2}}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}\right)
$$

- Polynomial Kernel

$$
K(\boldsymbol{x}, \boldsymbol{y})=(\langle\boldsymbol{x}, \boldsymbol{y}\rangle+c)^{c} \quad c, d \in \mathbb{R}
$$

Simple Kernels

- The all-ones kernel

$$
K(\boldsymbol{x}, \boldsymbol{y})=1
$$

- The delta (Dirac) kernel
$K(\boldsymbol{x}, \boldsymbol{y})= \begin{cases}1 & \text { if } \boldsymbol{x}=\boldsymbol{y}, \\ 0 & \text { otherwise }\end{cases}$

Closure Properties of Kernels

- For two kernels K_{1} and $K_{2}, K_{1}+K_{2}$ is a kernel
- For two kernels K_{1} and K_{2}, the product $K_{1} \cdot K_{2}$ is a kernel
- For a kernel K and a positive scalar $\lambda \in \mathbb{R}^{+}, \lambda K$ is a kernel
- For a kernel K on a set D, its zero-extension:
$K_{0}(\boldsymbol{x}, \boldsymbol{y})= \begin{cases}K(\boldsymbol{x}, \boldsymbol{y}) & \text { if } \boldsymbol{x}, \boldsymbol{y} \in D, \\ 0 & \text { otherwise }\end{cases}$
is a kernel

Kernels on Structured Data

- Given objects X and Y, decompose them into substructures S and T
- The R-convolution kernel K_{R} by Haussler (1999) is given as
$K_{R}(X, Y)=\sum_{s \in S, t \in T} K_{\text {base }}(s, t)$
- $K_{\text {base }}$ is an arbitrary base kernel, often the delta kernel
- For example, X is a graph and S is the set of all subgraphs

What Is Graph?

- An object consisting of vertices (nodes) connected with edges
- A graph is directed if the edges are directed, otherwise it is undirected
- A graph is written as $G=(V, E)$, where V is a vertex set and E is an edge set
- Labels can be associated with vertices and/or edges
- If a function φ gives labels, the label of a vertex $v \in V$ is $\varphi(v)$ and that of an edge $e \in E$ is $\varphi(e)$

Example of Graph

- A graph $G=(V, E, \varphi)$
- $V=\{1,2,3,4\}$
- $E=\{\{1,2\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$
- $\varphi(1)=$ green, $\varphi(2)=$ blue, $\varphi(3)=$ red, $\varphi(4)=$ blue
- $\varphi(\{\{1,2\})=$ zigzag, $\varphi(\{1,4\})=$ straight, $\varphi(\{2,3\})=$ zigzag, $\varphi(\{2,4\})=$ straight, $\varphi(\{3,4\}\})=$ straight

Example of Graph

Similarity between Graphs

Similarity between Graphs

Example

Vertex Label Histogram Kernel

Edge Label Histogram Kernel

G^{\prime}

- mm

$$
\begin{array}{llll}
G & 3 & 2 & K_{\mathrm{EH}}\left(G, G^{\prime}\right)=3 \cdot 1+2 \cdot 2=7 \\
G^{\prime} & 1 & 2
\end{array}
$$

Vertex-Edge Label Histogram Kernel

Product Graph

- The direct product $G_{\times}=\left(V_{x}, E_{\times}, \varphi_{x}\right)$ of $G=(V, E, \varphi), G^{\prime}=\left(V^{\prime}, E^{\prime}, \varphi^{\prime}\right)$:

$$
V_{x}=\left\{\left(v, v^{\prime}\right) \in V \times V^{\prime} \mid \varphi(v)=\varphi^{\prime}\left(v^{\prime}\right)\right\},
$$

$$
E_{\times}=\left\{\begin{array}{l|l}
\left(\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right) \in v_{\times} \times v_{\times} & \begin{array}{l}
(u, v) \in E_{,}\left(u^{\prime}, v^{\prime}\right) \in E^{\prime}, \\
\varphi(u, v)=\varphi^{\prime}\left(u^{\prime}, v^{\prime}\right)
\end{array}
\end{array}\right\}
$$

- All labels are inherited

k-Step Random Walk Kernal

- The k-step (fixed-length- k) random walk kernel between G and G^{\prime} :
$K_{x}^{k}\left(G, G^{\prime}\right)=\sum_{i, j=1}^{\left|V_{x}\right|}\left[\lambda_{0} A_{\times}^{0}+\lambda_{1} A_{\times}^{1}+\lambda_{2} A_{\times}^{2}+\cdots+\lambda_{k} A_{\times}^{k}\right]_{i j} \quad\left(\lambda_{l}>0\right)$
- A_{x} : The adjacency matrix of the product graph
- The $i j$ entry of A_{x}^{n} shows the number of paths from i to j

Geometric Random Walk Kernel

- K_{\times}^{∞} can be directly computed if $\lambda_{\ell}=\lambda^{\ell}$ for each $\ell \in\{0, \ldots, k\}$ (geometric series), resulting in the geometric random walk kernel:

$$
\begin{aligned}
K_{G R}\left(G, G^{\prime}\right) & =\sum_{i, j=1}^{\left|V_{x}\right|}\left[\lambda^{0} A_{\times}^{0}+\lambda^{1} A_{\times}^{1}+\lambda^{2} A_{\times}^{2}+\lambda^{3} A_{\times}^{3}+\cdots\right]_{i j}=\sum_{i, j=1}^{\left|V_{x}\right|}\left[\sum_{\ell=0}^{\infty} \lambda^{\ell} A_{\times}^{\ell}\right]_{i j} \\
& =\sum_{i, j=1}^{\left|V_{x}\right|}\left[\left(I-\lambda A_{\times}\right)^{-1}\right]_{i j}
\end{aligned}
$$

- Well-defined only if $\lambda<1 / \mu_{x, \max }$ ($\mu_{x, \max }$ is the max. eigenvalue of A_{\times})
$-\delta_{x}$ (min. degree) $\leq \bar{d}_{x}$ (average degree) $\leq \mu_{x, \max } \leq \Delta_{\times}$(max. degree)

Weisfeiler-Lehman Kernel

Given graphs

Re-labeling after 1st iteration

$$
\begin{array}{ll}
1,4 \rightarrow 6 & 3,245 \rightarrow 10 \\
2,3 \rightarrow 7 & 4,1135 \rightarrow 11 \\
2,35 \rightarrow 8 & 4,1235 \rightarrow 12 \\
2,45 \rightarrow 9 & 5,234 \rightarrow 13
\end{array}
$$

1st iteration

After 1st iteration

Weisfeiler-Lehman Kernel

- The kernel value becomes:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\text { label } \\
\varphi(G)^{(1)} \\
\varphi\left(G^{\prime}\right)^{(1)}
\end{array}\right]=\left[\begin{array}{lllllllllcccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
2 & 1 & 1 & 1 & 1 & 2 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right],} \\
& K_{W L}^{1}\left(G, G^{\prime}\right)=11
\end{aligned}
$$

Performance Comparison

graphkernels Package

- A package for graph kernels available in R and Python
- R:
https://CRAN.R-project.org/package=graphkernels
- Python: https://pypi.org/project/graphkernels/
- Paper: https://doi.org/10.1093/bioinformatics/btx602

