

Machine Learning for Graph Structured Data

Introduction to Big Data Science (ビッグデータ概論)

Mahito Sugiyama (杉山麿人)

- 1, 2, 4, 7, . . .
 - What are succeeding numbers?

- 1, 2, 4, 7, . . .
 - What are succeeding numbers?

1, 2, 4, 7, 11, 16, ...
$$(a_n = a_{n-1} + n - 1)$$

- 1, 2, 4, 7, . . .
 - What are succeeding numbers?

1, 2, 4, 7, 11, 16, ...
$$(a_n = a_{n-1} + n - 1)$$

1, 2, 4, 7, 12, 20, ...
$$(a_n = a_{n-1} + a_{n-2} + 1)$$

- 1, 2, 4, 7, . . .
 - What are succeeding numbers?

1, 2, 4, 7, 11, 16, ...
$$(a_n = a_{n-1} + n - 1)$$

1, 2, 4, 7, 12, 20, ... $(a_n = a_{n-1} + a_{n-2} + 1)$
1, 2, 4, 7, 13, 24, ... $(a_n = a_{n-1} + a_{n-2} + a_{n-3})$

- 1, 2, 4, 7, . . .
 - What are succeeding numbers?

1, 2, 4, 7, 11, 16, ...
$$(a_n = a_{n-1} + n - 1)$$

1, 2, 4, 7, 12, 20, ... $(a_n = a_{n-1} + a_{n-2} + 1)$
1, 2, 4, 7, 13, 24, ... $(a_n = a_{n-1} + a_{n-2} + a_{n-3})$
1, 2, 4, 7, 14, 28 (divisors of 28)

- 1, 2, 4, 7, . . .
 - What are succeeding numbers?

```
1, 2, 4, 7, 11, 16, ... (a_n = a_{n-1} + n - 1)

1, 2, 4, 7, 12, 20, ... (a_n = a_{n-1} + a_{n-2} + 1)

1, 2, 4, 7, 13, 24, ... (a_n = a_{n-1} + a_{n-2} + a_{n-3})

1, 2, 4, 7, 14, 28 (divisors of 28)

1, 2, 4, 7, 1, 1, 5, ... (decimals of \pi = 3.1415..., e = 2.718...)
```

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

- 1, 2, 4, 7, . . .
 - What are succeeding numbers?

```
1, 2, 4, 7, 11, 16, ... (a_n = a_{n-1} + n - 1)

1, 2, 4, 7, 12, 20, ... (a_n = a_{n-1} + a_{n-2} + 1)

1, 2, 4, 7, 13, 24, ... (a_n = a_{n-1} + a_{n-2} + a_{n-3})

1, 2, 4, 7, 14, 28 (divisors \ of \ 28)

1, 2, 4, 7, 1, 1, 5, ... (decimals \ of \ \pi = 3.1415 \dots, e = 2.718 \dots)
```

• 1107 results (!) in the online encyclopedia (https://oeis.org/)

Analyze Learning as Scientific Problem

- Which is the correct answer (or generalization) for succeeding numbers of 1, 2, 4, 7, . . . ?
 - Any answer is possible!

Analyze Learning as Scientific Problem

- Which is the correct answer (or generalization) for succeeding numbers of 1, 2, 4, 7, ...?
 - Any answer is possible!
- We should take two points into consideration:
 - (i) We need to formalize the problem of "learning"
 - There are two agents (teacher and learner) in learning, which are different from "computation"
 - (ii) Learning is an infinite process
 - A learner usually never knows that the current hypothesis is perfectly correct

Learning of Binary Classifier

Learning of Binary Classifier

Example: Perceptron (by F. Rosenblatt, 1958)

- Learning target: two subsets $F, G \subseteq \mathbb{R}^d$ s.t. $F \cap G = \emptyset$
 - Assumption: F and G are linearly separable
 - There exists a function (classifier) $f_*(\mathbf{x}) = \langle \mathbf{w}_*, \mathbf{x} \rangle + b$ s.t. $f_*(\mathbf{x}) > 0 \quad \forall \mathbf{x} \in F, \quad f_*(\mathbf{x}) < 0 \quad \forall \mathbf{x} \in G$

Example: Perceptron (by F. Rosenblatt, 1958)

- Learning target: two subsets $F, G \subseteq \mathbb{R}^d$ s.t. $F \cap G = \emptyset$
 - Assumption: F and G are linearly separable
 - There exists a function (classifier) $f_*(\mathbf{x}) = \langle \mathbf{w}_*, \mathbf{x} \rangle + b$ s.t. $f_*(\mathbf{x}) > 0 \quad \forall \mathbf{x} \in F, \quad f_*(\mathbf{x}) < 0 \quad \forall \mathbf{x} \in G$
- **Hypotheses**: hyperplanes on \mathbb{R}^d
 - If we consider a linear equation $f(x) = \langle w, x \rangle + b$, each line can be uniquely specified by a pair of two parameters (w, b) (hypothesis)

Example: Perceptron (by F. Rosenblatt, 1958)

- Learning target: two subsets $F, G \subseteq \mathbb{R}^d$ s.t. $F \cap G = \emptyset$
 - Assumption: F and G are linearly separable
 - There exists a function (classifier) $f_*(\mathbf{x}) = \langle \mathbf{w}_*, \mathbf{x} \rangle + b$ s.t. $f_*(\mathbf{x}) > 0 \quad \forall \mathbf{x} \in F, \quad f_*(\mathbf{x}) < 0 \quad \forall \mathbf{x} \in G$
- **Hypotheses**: hyperplanes on \mathbb{R}^d
 - If we consider a linear equation $f(x) = \langle w, x \rangle + b$, each line can be uniquely specified by a pair of two parameters (w, b) (hypothesis)
- Data: a sequence of pairs $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots$
 - (x_i, y_i) : (a real-valued vector in \mathbb{R}^d , a label)
 - \mathbf{x}_i ∈ $F \cup G$, y_i ∈ {1, -1}, and y_i = 1 (y_i = -1) if \mathbf{x}_i ∈ F (\mathbf{x}_i ∈ G)

Learning Model for Perceptron

Learning Procedure of Perceptron

1. $\mathbf{w} \leftarrow 0, b \leftarrow 0$ (or a small random value)

// initialization

- 2. for i = 1, 2, 3, ... do
- 3. Receive *i*-th pair (\mathbf{x}_i, y_i)
- 4. Compute $a = \sum_{i=1}^d w^i x_i^j + b^i$
- 5. if $y_i \cdot a < o$ then
- 6. $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$
- 7. $b \leftarrow b + y_i$
- 8. end if
- 9. end for

 $// x_i$ is misclassified

// update the weight

// update the bias

Correctness of Perceptron

- It is guaranteed that a perceptron always converges to a correct classifier
 - A correct classifier is a function f s.t.

$$f(\mathbf{x}) > 0 \quad \forall \mathbf{x} \in F,$$

 $f(\mathbf{x}) < 0 \quad \forall \mathbf{x} \in G$

- The convergence theorem
- Note: there are (infinitely) many functions that correctly classify F and G
 - A perceptron converges to one of them

Summary: Perceptron

Target	Two disjoint subsets of \mathbb{R}^d
Representation	Two parameters (\mathbf{w}, b) of linear
	equation $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b$
Data	Real vectors from target subsets
Algorithm	Perceptron
Correctness	Convergence theorem

Support Vector Machines (SVMs)

- A dataset D is separable by $f \iff y_i f(\mathbf{x}_i) > 0, \forall i \in \{1, 2, ..., n\}$
- The margin is the distance from the classification hyperplane to the closest data point
- Support vector machines (SVMs) tries to find a hyperplane that maximize the margin

Margin

Formulation of SVMs

- The distance from a point \mathbf{x}_i to a hyperplane $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + w_0$ is $\frac{|f(\mathbf{x}_i)|}{||\mathbf{w}||} = \frac{|\langle \mathbf{w}, \mathbf{x}_i \rangle + w_0|}{||\mathbf{w}||}$
- Since $y_i f(\mathbf{x}_i) > 0$ should be satisfied, assume that there exists M > 0 such that $y_i f(\mathbf{x}_i) \ge M$ for all $i \in \{1, 2, ..., n\}$
- The margin maximization problem can be written as

$$\max_{\boldsymbol{w},w_{o},M} \frac{M}{\|\boldsymbol{w}\|} \quad \text{subject to } y_{i}f(\boldsymbol{x}_{i}) \geq M, i \in \{1,2,\ldots,n\}$$

$$- M = \min_{i \in \{1,2,\ldots,n\}} |\langle \mathbf{w}, x_i \rangle + w_o|$$

Hard Margin SVMs

We can eliminate M and obtain

$$\max_{\boldsymbol{w},w_o} \frac{1}{||\boldsymbol{w}||} \quad \text{subject to } y_i f(\boldsymbol{x}_i) \ge 1, i \in \{1,2,\ldots,n\}$$

This is equivalent to

```
\min_{\boldsymbol{w}, w_o} ||\boldsymbol{w}||^2 \quad \text{subject to } y_i f(\boldsymbol{x}_i) \ge 1, i \in \{1, 2, \dots, n\}
```

- The standard formulation of hard margin SVMs
- There are data points x_i satisfying $y_i f(\mathbf{x}_i) = 1$, called support vectors
- The solution does not change even data points that are not support vectors are removed

Margin

Soft Margin

- Datasets are not often separable
- Extend SV classification to soft margin by relaxing $\langle w, x \rangle + w_0 \ge 1$
- Change the constraint $y_i f(\mathbf{x}_i) \ge 1$ using the slack variable ξ_i to $y_i f(\mathbf{x}_i) = y_i (\langle \mathbf{w}, \mathbf{x} \rangle + w_o) \ge 1 \xi_i, \quad i \in \{1, 2, ..., n\}$
- The formulation of soft margin SVM (C-SVM) is

$$\min_{\boldsymbol{w}, w_o, \boldsymbol{\xi}} \frac{1}{2} ||\boldsymbol{w}||^2 + C \sum_{i \in \{1, 2, ..., n\}} \xi_i \quad \text{s.t. } y_i f(\boldsymbol{x}_i) \ge 1 - \xi_i, \, \xi_i \ge 0, \, i \in \{1, 2, ..., n\}$$

- C is called the regularization parameter

Soft Margin

Data Point Location

- $y_i f(\mathbf{x}_i) > 1$: \mathbf{x}_i is outside margin
 - These points do not affect to the classification hyperplane
- $y_i f(\mathbf{x}_i) = 1$: \mathbf{x}_i is on margin
- $y_i f(\mathbf{x}_i) < 1$: \mathbf{x}_i is inside margin
 - These points do not exist in hard margin
- Points on margin and inside margin are support vectors

Dual Problem (1/4)

The formulation of C-SVM

$$\min_{\boldsymbol{w}, w_o, \boldsymbol{\xi}} \frac{1}{2} ||\boldsymbol{w}||^2 + C \sum_{i \in \{1, 2, ..., n\}} \xi_i \quad \text{s.t. } y_i f(\boldsymbol{x}_i) \ge 1 - \xi_i, \, \xi_i \ge 0, \, i \in \{1, 2, ..., n\}$$

is called the primal problem

- This is usually solved via the dual problem
- Make the Lagrange function using $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n), \boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$: $L(\boldsymbol{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\mu}) = \frac{1}{2} ||\boldsymbol{w}||^2 + C \sum_{i \in [n]} \xi_i - \sum_{i \in [n]} \alpha_i (y_i f(\boldsymbol{x}_i) - 1 + \xi_i) - \sum_{i \in [n]} \mu_i \xi_i$

$$-[n] = \{1, 2, \ldots, n\}$$

Dual Problem (2/4)

Let us consider

$$D(\boldsymbol{\alpha}, \boldsymbol{\mu}) = \min_{\boldsymbol{w}, w_o, \boldsymbol{\xi}} L(\boldsymbol{w}, w_o, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\mu})$$

and its maximization

$$\max_{\boldsymbol{\alpha} \geq 0, \boldsymbol{\mu} \geq 0} D(\boldsymbol{\alpha}, \boldsymbol{\mu}) = \max_{\boldsymbol{\alpha} \geq 0, \boldsymbol{\mu} \geq 0} \min_{\boldsymbol{w}, \boldsymbol{w}_{o}, \boldsymbol{\xi}} L(\boldsymbol{w}, \boldsymbol{w}_{o}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\mu})$$

The inside minimization is achieved when

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i \in [n]} \alpha_i y_i \mathbf{x}_i = 0, \ \frac{\partial L}{\partial w_o} = -\sum_{i \in [n]} \alpha_i y_i = 0, \ \frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i = 0$$

Dual Problem (3/4)

• Putting the three conditions to the Lagrange function to remove \mathbf{w} , w_o , and $\boldsymbol{\xi}$, yielding

$$L = \frac{1}{2} ||\mathbf{w}||^{2} + C \sum_{i \in [n]} \xi_{i} - \sum_{i \in [n]} \alpha_{i} (y_{i} f(\mathbf{x}_{i}) - 1 + \xi_{i}) - \sum_{i \in [n]} \mu_{i} \xi_{i}$$

$$= \frac{1}{2} ||\mathbf{w}||^{2} - \sum_{i \in [n]} \alpha_{i} y_{i} \langle \mathbf{w}, \mathbf{x}_{i} \rangle - w_{o} \sum_{i \in [n]} \alpha_{i} y_{i} + \sum_{i \in [n]} \alpha_{i} + \sum_{i \in [n]} (C - \alpha_{i} - \mu_{i}) \xi_{i}$$

$$= -\frac{1}{2} \sum_{i,j \in [n]} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle + \sum_{i \in [n]} \alpha_{i}$$

$$= -\frac{1}{2} \sum_{i,j \in [n]} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle + \sum_{i \in [n]} \alpha_{i}$$

Dual Problem (4/4)

• It can be proved that $\max_{\alpha \geq 0, \mu \geq 0} \min_{\mathbf{w}, w_0, \xi} L(\mathbf{w}, w_0, \xi, \alpha, \mu)$, that is, the dual problem

$$\max_{\boldsymbol{\alpha}} -\frac{1}{2} \sum_{i,j \in [n]} \alpha_i \alpha_j y_i y_j \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle + \sum_{i \in [n]} \alpha_i \quad \text{s.t.} \sum_{i \in [n]} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, i \in [n]$$

is equivalent to the primal problem

$$\min_{\boldsymbol{w}, w_o, \boldsymbol{\xi}} \frac{1}{2} ||\boldsymbol{w}||^2 + C \sum_{i \in \{1, 2, ..., n\}} \xi_i \quad \text{s.t. } y_i f(\boldsymbol{x}_i) \ge 1 - \xi_i, \, \xi_i \ge 0, \, i \in [n]$$

KKT (Karush-Kuhn-Tucker) condition

The necessary conditions for a solution to be optimal:

$$\frac{\partial L}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{i \in [n]} \alpha_i y_i \boldsymbol{x}_i = 0, \ \frac{\partial L}{\partial w_o} = -\sum_{i \in [n]} \alpha_i y_i = 0, \ \frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i = 0$$

$$- (y_i f(\boldsymbol{x}_i) - 1 + \xi_i) \le 0, \ -\xi_i \le 0,$$

$$\alpha_i \ge 0, \ \mu_i \ge 0,$$

$$\alpha_i (y_i f(\boldsymbol{x}_i) - 1 - \xi_i) = 0, \ \mu_i \xi_i = 0,$$

$$i \in [n]$$

Recovering Primal Variables

• Using these conditions, from the optimal α , we have

$$f(\mathbf{x}) = \sum_{i \in [n]} \alpha_i y_i \langle \mathbf{x}_i, \mathbf{x} \rangle + w_o,$$

$$w_{o} = y_{i} - \sum_{j \in [n]} \alpha_{j} y_{j} \langle \boldsymbol{x}_{j}, \boldsymbol{x}_{i} \rangle, \quad \forall i \in \{i \in [n] \mid 0 < \alpha_{i} < C\}$$

– Since the second condition holds for all $i \in \{i \in [n] \mid 0 < \alpha_i < C\}$, one can take the average to avoid numerical errors

Data Point Location

- $y_i f(\mathbf{x}_i) > 1 \iff a_i = 0$: \mathbf{x}_i is outside margin
 - These points do not affect to the classification hyperplane
- $y_i f(\mathbf{x}_i) = 1 \iff 0 < \alpha_i < C$: \mathbf{x}_i is on margin
- $y_i f(\mathbf{x}_i) < 1 \iff \alpha_i = C : \mathbf{x}_i$ is inside margin
 - These points do not exist in hard margin
- Points on margin and inside margin are support vectors

How to Solve?

The (dual) problem:

$$\max_{\boldsymbol{\alpha}} - \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} + \boldsymbol{1}^T \boldsymbol{\alpha} \quad \text{s.t. } \boldsymbol{y}^T \boldsymbol{\alpha} = 0, \ 0 \le \boldsymbol{\alpha} \le C \boldsymbol{1}$$

- $Q ∈ \mathbb{R}^{n \times n}$ is the matrix such that $q_{ij} = y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$
- Since analytical solution is not available, iterative approach for continuous optimization with constraints is needed
- One of standard methods is the active set method

Active Set Method

Divide the set [n] of indices into three sets:

$$O = \{i \in [n] \mid \alpha_i = 0\}$$

$$M = \{i \in [n] \mid 0 < \alpha_i < C\}$$

$$I = \{i \in [n] \mid \alpha_i = C\}$$

- O and I are called active sets
- The problem can be solved w.r.t. $i \in M$, yielding

$$\begin{bmatrix} Q_M & \mathbf{y}_M \\ \mathbf{y}_M^T & 0 \end{bmatrix} \begin{bmatrix} \alpha_M \\ v \end{bmatrix} = -C \begin{bmatrix} Q_{M,I} & \mathbf{1} \\ \mathbf{1}^T & \mathbf{y}_I \end{bmatrix} + \begin{bmatrix} \mathbf{1} \\ 0 \end{bmatrix}$$

– This can be directly solved if Q_M is positive definite

Algorithm 1: Active Set Method

```
1 activeSetMethod(D)
```

```
2 Initialize M, I, O
```

10

while there exists i s.t. $y_i f(\mathbf{x}_i) < 1$, $i \in O$ or $y_i f(\mathbf{x}_i) > 1$, $i \in I$ do

4 | Update *M*, *I*, *O*

repeat

 $a_M^{\text{new}} \leftarrow \text{the solution of the above equation}$

$$\boldsymbol{d} \leftarrow \boldsymbol{\alpha}_{M}^{\text{new}} - \boldsymbol{\alpha}_{M}$$

 $\boldsymbol{a}_M \leftarrow \boldsymbol{a}_M + \eta \boldsymbol{d}$; // the maximum η satisfying

$$\boldsymbol{\alpha}_M \in [0,C]^{|M|}$$

Move $i \in M$ from M to I or O if $\alpha_i = C$ or $\alpha_i = 0$

until
$$\boldsymbol{\alpha}_{M} = \boldsymbol{\alpha}_{M}^{new}$$
;

Extension to Nonlinear Classification

• To achieve nonlinear classification, convert each data point \mathbf{x} to some point $\varphi(\mathbf{x})$, and $f(\mathbf{x})$ becomes $f(\mathbf{x}) = \langle \mathbf{w}, \varphi(\mathbf{x}) \rangle + w_0$

The dual problem becomes

$$\max_{\boldsymbol{\alpha}} -\frac{1}{2} \sum_{i,j \in [n]} \alpha_i \alpha_j y_i y_j \langle \varphi(\boldsymbol{x}_i), \varphi(\boldsymbol{x}_j) \rangle + \sum_{i \in [n]} \alpha_i \text{ s.t. } \sum_{i \in [n]} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, i \in [n]$$

- Only the dot product $\langle \varphi(\mathbf{x}_i), \varphi(\mathbf{x}_i) \rangle$ is used!
- We do not even need to know $\varphi(\mathbf{x}_i)$ and $\varphi(\mathbf{x}_i)$
- Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \langle \varphi(\mathbf{x}_i), \varphi(\mathbf{x}_j) \rangle$

C-SVM with Kernel Trick

Using the kernel function K, we have

$$\max_{\boldsymbol{\alpha}} -\frac{1}{2} \sum_{i,j \in [n]} \alpha_i \alpha_j y_i y_j K(\boldsymbol{x}_i, \boldsymbol{x}_j) + \sum_{i \in [n]} \alpha_i \text{ s.t. } \sum_{i \in [n]} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, i \in [n]$$

The technique of using K is called kernel trick

Positive Definite Kernel

- A kernel $K: \Omega \times \Omega \to \mathbb{R}$ is a positive definite kernel if
 - (i) K(x, y) = K(y, x)
 - (ii) For x_1, x_2, \ldots, x_n , the $n \times n$ matrix

$$(K_{ij}) = \begin{bmatrix} K(x_1, x_1) & K(x_2, x_1) & \dots & K(x_n, x_1) \\ K(x_1, x_2) & K(x_2, x_2) & \dots & K(x_n, x_2) \\ \dots & \dots & \dots & \dots \\ K(x_1, x_n) & K(x_2, x_n) & \dots & K(x_n, x_n) \end{bmatrix}$$

is positive (semi-)definite, that is, $\sum_{i,j=1}^{n} c_i c_j K(x_i, x_j) \ge 0$ for any $c_1, c_2, \ldots, c_n \in \mathbb{R}$

- (K_{ij}) ∈ $\mathbb{R}^{n \times n}$ is called the Gram matrix

Popular Positive Definite Kernels

Linear Kernel

$$K(\boldsymbol{x}, \boldsymbol{y}) = \langle \boldsymbol{x}, \boldsymbol{y} \rangle$$

Gaussian (RBF) kernel

$$K(\boldsymbol{x}, \boldsymbol{y}) = \exp\left(-\frac{1}{\sigma^2}||\boldsymbol{x} - \boldsymbol{y}||^2\right)$$

Polynomial Kernel

$$K(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle + c)^{c} \quad c, d \in \mathbb{R}$$

Simple Kernels

The all-ones kernel

$$K(\boldsymbol{x},\boldsymbol{y})=1$$

The delta (Dirac) kernel

$$K(\mathbf{x}, \mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} = \mathbf{y}, \\ 0 & \text{otherwise} \end{cases}$$

Closure Properties of Kernels

- For two kernels K_1 and K_2 , $K_1 + K_2$ is a kernel
- For two kernels K_1 and K_2 , the product $K_1 \cdot K_2$ is a kernel
- For a kernel K and a positive scalar $\lambda \in \mathbb{R}^+$, λK is a kernel
- For a kernel K on a set D, its zero-extension:

$$K_{o}(\mathbf{x}, \mathbf{y}) = \begin{cases} K(\mathbf{x}, \mathbf{y}) & \text{if } \mathbf{x}, \mathbf{y} \in D, \\ 0 & \text{otherwise} \end{cases}$$

Kernels on Structured Data

- Given objects X and Y, decompose them into substructures S and T
- The R-convolution kernel K_R by Haussler (1999) is given as

$$K_R(X,Y) = \sum_{s \in S, t \in T} K_{\text{base}}(s,t)$$

- K_{base} is an arbitrary base kernel, often the delta kernel
- For example, X is a graph and S is the set of all subgraphs

What Is Graph?

- An object consisting of vertices (nodes) connected with edges
- A graph is directed if the edges are directed, otherwise it is undirected
- A graph is written as G = (V, E), where V is a vertex set and
 E is an edge set
- Labels can be associated with vertices and/or edges
 - If a function φ gives labels, the label of a vertex $v \in V$ is $\varphi(v)$ and that of an edge $e \in E$ is $\varphi(e)$

Example of Graph

- A graph $G = (V, E, \varphi)$
 - $-V = \{1, 2, 3, 4\}$
 - $-E = \{\{1, 2\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}\}$
 - $-\varphi(1)$ = green, $\varphi(2)$ = blue, $\varphi(3)$ = red, $\varphi(4)$ = blue
 - $\varphi(\{\{1,2\}) = zigzag, \varphi(\{1,4\}) = straight,$ $\varphi(\{2,3\}) = zigzag, \varphi(\{2,4\}) = straight,$ $\varphi(\{3,4\}\}) = straight$

Example of Graph

The adjacency matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Similarity between Graphs

Similarity between Graphs

Example

Vertex Label Histogram Kernel

Edge Label Histogram Kernel

Vertex-Edge Label Histogram Kernel

Product Graph

• The direct product $G_{\times} = (V_{\times}, E_{\times}, \varphi_{\times})$ of $G = (V, E, \varphi), G' = (V', E', \varphi')$: $V_{\times} = \{ (v, v') \in V \times V' \mid \varphi(v) = \varphi'(v') \},$ $E_{\times} = \left\{ ((u, u'), (v, v')) \in V_{\times} \times V_{\times} \middle| \begin{array}{l} (u, v) \in E, \ (u', v') \in E', \\ \varphi(u, v) = \varphi'(u', v') \end{array} \right\}$

All labels are inherited

42/48

k-Step Random Walk Kernal

• The k-step (fixed-length-k) random walk kernel between G and G':

$$K_{\times}^{k}(G, G') = \sum_{i,j=1}^{|V_{\times}|} \left[\lambda_{0} A_{\times}^{0} + \lambda_{1} A_{\times}^{1} + \lambda_{2} A_{\times}^{2} + \dots + \lambda_{k} A_{\times}^{k} \right]_{ij} \quad (\lambda_{l} > 0)$$

- A_{\times} : The adjacency matrix of the product graph
- The ij entry of A_{\times}^{n} shows the number of paths from i to j

Geometric Random Walk Kernel

• K_{\times}^{∞} can be directly computed if $\lambda_{\ell} = \lambda^{\ell}$ for each $\ell \in \{0, ..., k\}$ (geometric series), resulting in the geometric random walk kernel:

$$K_{GR}(G, G') = \sum_{i,j=1}^{|V_{\times}|} \left[\lambda^{\circ} A_{\times}^{\circ} + \lambda^{1} A_{\times}^{1} + \lambda^{2} A_{\times}^{2} + \lambda^{3} A_{\times}^{3} + \cdots \right]_{ij} = \sum_{i,j=1}^{|V_{\times}|} \left[\sum_{\ell=0}^{\infty} \lambda^{\ell} A_{\times}^{\ell} \right]_{ij}$$
$$= \sum_{i,j=1}^{|V_{\times}|} \left[(\mathbb{I} - \lambda A_{\times})^{-1} \right]_{ij}$$

- Well-defined only if $\lambda < 1/\mu_{x,max}$ ($\mu_{x,max}$ is the max. eigenvalue of A_x)
- δ_{\times} (min. degree) ≤ $\overline{d_{\times}}$ (average degree) ≤ $\mu_{\times, \text{max}}$ ≤ Δ_{\times} (max. degree)

Weisfeiler-Lehman Kernel

Given graphs

Re-labeling after 1st iteration

1st iteration

After 1st iteration

Weisfeiler-Lehman Kernel

The kernel value becomes:

$$K_{\mathrm{WL}}^{1}(G,G')=11$$

Performance Comparison

graphkernels Package

- A package for graph kernels available in R and Python
- R:
 https://CRAN.R-project.org/package=graphkernels
- Python: https://pypi.org/project/graphkernels/
- Paper: https://doi.org/10.1093/bioinformatics/btx602