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Example of Learning from Data
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©1,2,4,7,...
— What are succeeding numbers?
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« 1107 results (!) in the online encyclopedia (https://oeis.org/)
1/48


https://oeis.org/

Analyze Learning as Scientific Problem

- Which is the correct answer (or )
for succeeding numbers of1,2,4,7,... ?

— Any answer is possible!
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Analyze Learning as Scientific Problem

- Which is the correct answer (or )
for succeeding numbers of1,2,4,7,... ?

— Any answer is possible!

- We should take two points into consideration:
(i) We need to formalize the problem of “learning”

o There are ( and ) in learning,
which are different from “computation”

(ii) Learningisan

o A learner usually never knows that
the current hypothesis is perfectly correct
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Learning of Binary Classifier
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Learning of Binary Classifier
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Example: Perceptron (byF. Rosenblatt, 1958)

- Learning target: two subsets F,G ¢ RIst.FNG=o
— Assumption: F and G are

o There exists a function (classifier) f,(x) = (w,, x) + b s.t.
f.(x)>0 VxE€F, f.(x)<0 VxeaG
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Example: Perceptron (byF. Rosenblatt, 1958)

- Learning target: two subsets F,G ¢ RIst.FNG=o
— Assumption: F and G are
o There exists a function (classifier) f,(x) = (w,, x) + b s.t.
f.(x)>0 Vx€eF, f.(x)<0 VxeG@G
- Hypotheses: hyperplanes on R¢

— If we consider a linear equation f(x) = (w, x) + b, each line can be
uniquely specified by a pair of two parameters (w, b) ( )

- Data: a sequence of pairs (x,, v,), (x5, ¥>), ...

~ (x;,y,): (a real-valued vector in R?, a label)
- X,' € FUG,y,' € {1,—1},andy,' - 1 (y, - —1)IfX, € F(X, € G) 4/48



Learning Model for Perceptron

fxX) =wx+b=0
~— A hypothesis, a hyperplane
in general, is uniquely specified
by a pair (w, b)

’_‘(XI-I 1)

T~ (x;, -1) Data

O
OO O
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Learning Procedure of Perceptron

1. w < 0, b « 0 (orasmall random value) // initialization

2. fori=1,2,3,... do

3. Receive i-th pair (x;, y;)
3/

4. Computea=y 5 w'x/+b

5. ify;-a<othen // x; is misclassified
6. We W+ YX; // update the weight
7 beb+y, // update the bias
8. endif

9. end for 6/48



Correctness of Perceptron

- Itis guaranteed that a perceptron always converges
to a correct classifier

— A correct classifier is a function f s.t.
f(x) >0 VxE€F,
f(x)<o Vxea

- Note: there are (infinitely) many functions
that correctly classify F and G

— A perceptron converges to one of them

7/48



Summary: Perceptron

Target

Representation

Data
Algorithm

Correctness

Two disjoint subsets of R

Two parameters (w, b) of linear
equation f(x) = (w, x) + b

Real vectors from target subsets
Perceptron

Convergence theorem
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Support Vector Machines (SVMs)

- Adataset D is byf < yf(x;)>0,Vie{1,2,...,n}

- The is the distance from the classification hyperplane
to the closest data point

- Support vector machines (SVMs) tries to find a hyperplane that
the margin
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fx) =(w, x) + wo =0
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Formulation of SVMs

- The distance from a point x; to a hyperplane f(x) = (w, x) + w, is
F(x;)|  [(w, x;) + wy

Iw]l Iw]l

- Since y;f(x;) > 0 should be satisfied, assume that there exists M > 0
such that y;f(x;) = Mforalli e {1,2,...,n}

- The margin maximization problem can be written as

M : :
max —— subjectto y;f(x;)=M,i€ {1,2,...,n}

wwo, M ||w|

- M= minie{1,2 ..... n} |<W, Xi) + Wol
11/48



Hard Margin SVMs

- We can eliminate M and obtain

1 . :
max —— subjectto y;f(x;)=1,i€{1,2,...,n}
wws [Iwl]

- This is equivalent to
min||lw|]® subjecttoyf(x;)=1,i€{1,2,...,n}

Wo
— The standard formulation of
— There are data points x; satisfying y;f(x;) = 1, called

— The solution does not change even data points that are not support
vectors are removed
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Margin

=(W,X)+Ww,=0

’ Margin
\Support vector

ST 13/48



Soft Margin

- Datasets are not often separable
- Extend SV classification to by relaxing (w, x) + w, > 1

- Change the constraint y;f(x;) = 1 using the ¢ to
y,-f(X,-)=y,-(<W,X)+WO)21—f,-, ie{1121-~-ln}

« The formulation of (C-SVM) is
1
min —”W”2 + CZ 6,’ Ss.t. y,'f(X,') > 1 — 6,‘, 6,’ >0,i € {1,2,...,n}
w,wo,§ 2 i€{1,2,...,n}

— Cis called the
14/48



Soft Margin

Cis large

Cis small
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Data Point Location

- yif(x;) > 1: x; is outside margin
— These points do not affect to the classification hyperplane

- yif(x;) = 1: x; is on margin

- y;f(x;) < 1: x; is inside margin
— These points do not exist in hard margin

- Points on margin and inside margin are support vectors

16/48



Dual Problem (1/4)

- The formulation of C-SVM
m|n£—||w|| +CZ6, st.yif(x;)=1-¢,§=0,ie{1,2,...,n}

w,w
o’ i€{1,2,...,n}

is called the

- This is usually solved via the

- Make the usinga =(a,,...,a ) M= (U, Up):
L(w,w,, & a, p) = —IIWII + CZ Gi — Z ai(yif(x;) = 1+¢&) Z Mii
i€[n] i€[n] i€[n]

- [n]={1,2,...,n} 17/48



Dual Problem (2/4)

- Let us consider
D(a’ l“') = min L(WI WOI fl al I',)

w,w,,§
and its maximization

max D(a,p)= max min L(w,w,, & a, )
a=0,U=0 azo,u=o w,w,,&

« The inside minimization is achieved when
oL
L w-Y ayx

i€[n] i€[n]

=—Zay,—0 ——C a; —

¢,

ui=0
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Dual Problem (3/4)

- Putting the three conditions to the Lagrange function
to remove w, w,, and §, yielding

L=slwlP+CY &= ailyfx)=1+&) =) wié

i€[n] i€[n] i€[n]
1
=5||W||2—Za,-y,-(w,x, WOZGYI+ZG +ZC aj — u:
i€[n] i€[n] i€[n] i€[n]
=——Za ajy,yj X,,Xj Za,
i, jeln] ie[n]
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Dual Problem (4/4)

- It can be proved that maxgso, u>o Miny w, ¢ L(w, w,, §, a, p), that is,
the

1 .
max — Za,-ajy,-yj(x,-,xj) - Za,- s.t. za,-y,- =0,0<a;<C,i€[n]
i,je[n] i€[n] i€[n]

is equivalent to the

1
min §||w||2 +C) & styf(x)z1-§,&20,i€[n]
Wilkor i€{1,2,...,n}
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KKT (Karush-Kuhn-Tucker) condition

The necessary conditions for a solution to be optimal:

oL
__W Zaylxl_o _=_Zai)/i=01 s =C-0a,-y; =0

IE[I’) ie[n] aé’
—(yif(x;)—1+¢;) <0, =& <0,
a; =20, u; =20,

a;(yif(x;)—=1-&)=0, u;&; =0,
i €[n]
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Recovering Primal Variables

o Using these conditions, from the optimal a, we have

_Zay/ Xi, X >+W01

i€[n]
=y — Za,yj Vie{ie[n]|0<a; <}
jeln]

— Since the second condition holds forall i € {i e [n] | 0 < a; < C}, one
can take the average to avoid numerical errors

22/48



Data Point Location

- yif(x;) >1 < a; = 0: x; is outside margin
— These points do not affect to the classification hyperplane

- yif(x;) =1 < 0<a; <C: x;ison margin

- yif(x;) <1 < a; = C: x; is inside margin
— These points do not exist in hard margin

- Points on margin and inside margin are support vectors
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How to Solve?

- The (dual) problem:
max—%aTQa +17a st yTa =0,0<a=<C1
a

- Q € R"™" is the matrix such that g;; = y;y;(x;, x;)

- Since analytical solution is not available, iterative approach for
continuous optimization with constraints is needed

- One of standard methods is the

24/48



Active Set Method

- Divide the set [n] of indices into three sets:
O={i€[n]]|a; =0}
M={ie[n]|0<a; <C}
I={i€[n]|a;=C}

— O and/ are called

« The problem can be solved w.r.t. i € M, yielding

Qv Yullau _ Qu, 1 1
B e it

~ Thi irectly solved if Qy is positive definit
is can be directly solved if Q,, is positive definite 25/48



1

2
3
4
5
6
7
8

10

Algorithm 1: Active Set Method

activeSetMethod(D)

Initialize M, I, O
while there existsis.t. y;f(x;) < 1,i € Oory;f(x;) > 1,i € I do

Update M, I, O
repeat

ay - < the solution of the above equation

de—ay —ay

ay, < ay +nd; // the maximum n satisfying
a, €[0,cI™

Moveie MfromMtolorOifaj=Cora; =0

untilay = ay, ;

26/48




Extension to Nonlinear Classification

- To achieve nonlinear classification, convert each data point x to
some point ¢(x), and f(x) becomes

f(x) = (w, o(x)) +w,

- The dual problem becomes

1 :
max —3 Z a;a;yiyi{e(x;), o(x;)) + Z a; s.t. Z a;jy;=0,0=<a;<C,i€[n]
i,je[n] i€[n] i€[n]
— Only the dot product (¢(x;), ¢(x;)) is used!
— We do not even need to know ¢(x;) and ¢(x )

: K(X,-,Xj) = {p(x;), QD(XJ» 27/48



C-SVM with Kernel Trick

- Using the kernel function K, we have
mglx—% Za,-ajy,-yjK(x,-,xj) + Za,- Ss.t. Za,-y,- =0,0<a;=<(C,i€ [n]

i,je[n] i€[n] i€[n]

— The technique of using K is called

28/48



Positive Definite Kernel

- AkernelK: OxQ - Risa if

(i) K(x,y) =Ky, x)
(i) For x,, x,,..., x,, the n x n matrix

_K(X11X1) K(X21X1) K(anX1)_
=[] K] o)
_K(wan) K(lexn) e K(anxn)_

n
i,j=1

is positive (semi-)definite, that s, )
foranyc,, ¢, ...,c, €R

- (K;;) € R"™" is called the

C,'CjK(X,',Xj) >0

29/48



Popular Positive Definite Kernels

« Linear Kernel
Kix,y)=(x,y)

« Gaussian (RBF) kernel

K(x,y) = exp (-—Ilx - yI*)

- Polynomial Kernel
Kx,y)=({x,y)+c)° ¢, deR
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Simple Kernels

« The all-ones kernel
K(x,y)=1

« The delta (Dirac) kernel

1 ifx=y,
K(x,y) _{ 0 otherwise
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Closure Properties of Kernels

- For two kernels K, and K,, K, + K, is a kernel
- For two kernels K, and K,, the product K, - K, is a kernel
- For a kernel K and a positive scalar A € R, AK is a kernel

- For a kernel K on a set D, its zero-extension:

[ K(x,y) ifx,y €D,
Kolx,¥) _{ 0 otherwise

is a kernel

32/48



Kernels on Structured Data

- Given objects X and Y, them into substructures Sand T
- The Kr by Haussler (1999) is given as
KR(XI Y) = Z Kbase(sr t)
SES, teT

— Kpase 1S an arbitrary base kernel, often the delta kernel

- For example, X is a graph and S is the set of all subgraphs

33/48



What Is Graph?

- An object consisting of (nodes) connected with

- Agraphis if the edges are directed,
otherwise it is

- A graphis written as G = (V, E), where V is a vertex set and
E is an edge set

o can be associated with vertices and/or edges

— If a function ¢ gives labels,
the label of a vertex v € Vis ¢(v) and that of an edge e € E is ¢(e)

34/48



Example of Graph

1 - Agraph G =
- v={1,23,4}
- E={{1,2},{1,4},{2,3},{2,4}, {3, 4}}

(V. E, p)

) = green, ¢(2) = blue, ¢(3) = red, ¢(4) = blue

(1
- o({{1, 2}) = zigzag, ¢({1, 4}) = straight,
cp({2 3}) = zigzag, ¢({2, 4}) = straight,
o = straight
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Example of Graph

1  The adjacency matrix
(0 1 0 1]
1 0 1 1
4 2 A=1o 1 o 1
1 1 1 O
3
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Similarity between Graphs
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Similarity between Graphs

Similarity = 14 Graph kernel
} Similarity = 12
\‘ :
S f
S ;

N,
N,
N,
N,
N,
\~
N,

Similarity =12
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Example
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Vertex Label Histogram Kernel

G G’

KVH(GI GI) — 22 + 10 + 11 :5

00
G 2 1 1
G 2 0 1
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Edge Label Histogram Kernel

G G’

B

VWA

? 3 Ke(G, G')=314+22=7

G
G/
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Vertex-Edge Label Histogram Kernel

G G’
0000000000 0006090000001000

G1 1 1 0 o o0 O 1 1 0 0 o0 ,
Kyen(G, G') =
GG1 0 O O O O O O 2 0 o0 o0 ven(G, G7) =3
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Product Graph

.« The direct product Gy = (Vy, Ex, @) of G = (V,E, @), G = (V',E, ¢"):
Vi ={(v,v)eVxV |o(v)=0()}
(u,v) €E, (u,v') eE, }

£ = { (W) (o) e x| b SE fEv)

— All labels are inherited

T (2,5) (4,7)

> 7
4 2 _
X Q}\:ﬂ‘ o (3,6)

(4.5)  42/48



k-Step Random Walk Kernal

- The (fixed-length-k) between G and G
|V«
Ka(G,G) = ) [AoAx + MAy + MAs + -+ + MeAy |

i, j=1

(A1 >0)

1]

- A,: The adjacency matrix of the product graph
— The ij entry of A%, shows the number of paths from i to j
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Geometric Random Walk Kernel

- Ky can be directly computed if A, = A for each £ € {o,..., k}

( ), resulting in the
| V| Vil T o0 . s
Ker(G, G') = Z [A°A% + NAL + XA, + AAY + - ],.j = { A Ax}
i,j=1 i,j=1L€=0 ij
| Vx|
—1
= 2 [(1=2A,) ]ij
i,j=1
— Well-defined only if (U max 1S the max. eigenvalue of A, )
— Oy (min. degree) < cl_>< (average degree) < < A, (max. degree)
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Weisfeiler-Lehman Kernel

Given graphs

Re-labeling after 1st iteration

1,4 —>»6
23 >»7
2,35—>» 8
2,45 —>» 9

3,245 —» 10
4,1135 = 11
4,1235 —» 12
5234 —» 13

1st iteration

(523437235 3

N
WIS

N

After 1st iteration

11

GB‘G\

G

10

G

(245 X5,2340

I

G,2455

GI




Weisfeiler-Lehman Kernel

- The kernel value becomes:

[ label 1 1 2 3 4 5 6 7 8 9 10 11 12 13

oG =2 11112010 1 1 0 1]
o) T2 1 1T 1 1 1 0 1 o 1 1
Kw (G, G') = 11
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Performance Comparison

ENZYMES

(9]
o
1

D
o
1

Accuracy

(i) Comparison of various graph kernels  (ii)

=

O[]

IKVH KEH KVEHKH KVEHiGi KGR K)i( | KWL

Label histogram Random walk

Comparison of Kgg with Ky

11 —O—Kgr
307 A Ky
. i
S 40
>
8 -
= 30- A
20_I T T T T
107 107 1073 107
Parameter A

(iii) k-step KX
o %elge
-
© 40+
>
S -
<< 30-
20+

1 3 5 7 9
Number of steps k
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graphkernels Package

- A package for graph kernels available in R and Python

- R:
https://CRAN.R-project.org/package=graphkernels

- Python:
https://pypi.org/project/graphkernels/

- Paper:
https://doi.org/10.1093/bioinformatics/btx602
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