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Objective of Today’s Lecture

- Learn a fundamental mechanism of machine learning
— Machine learning is a core process in many applications in data mining

o of machine learning are mainly discussed

- Key issues:
— Computing (single) vs Learning (double)
o Finite/infinite
— Learning targets (mathematical objects) vs Representations (programs)
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Example of Learning from Data
(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

°1,2,4,7,...
— What are succeeding numbers?
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Example of Learning from Data
(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

°1,2,4,7,...
— What are succeeding numbers?

1,2,4,7,1,16,... (a,=a,_,+n—1)
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Example of Learning from Data
(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

*1,2,4,7, ...

— What are succeeding numbers?

1,2,4,7,11,16, ...

1,2,4,7,12,20,...
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Example of Learning from Data
(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

*1,2,4,7, ...

— What are succeeding numbers?

1,2,4,7,11,16, ...
1,2,4,7,12,20,...

1,2, 4171 13,24, ...

(an
(an

(an

dn,_, +h—1)

dp— +dp, + 1)

=dpqtdp,+dps)
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Example of Learning from Data
(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

©1,2,4,7,...
— What are succeeding numbers?
1,2,4,7,1,16,... (a,=a,_,+n—1)
1,2,4,7,12,20,... (a,=a,_,+a,_,+1)
1,2,4,7,13,24,... (a,=a,_,+0a,_, +a,_;)
1,2,4,7,14,28 (divisors of 28)
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Example of Learning from Data
(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

©1,2,4,7,...
— What are succeeding numbers?
1,2,4,7,1,16,... (a,=a,_,+n—1)
1,2,4,7,12,20,... (a,=a,_,+a,_,+1)
1,2,4,7,13,24,... (a,=a,_,+0a,_, +a,_;)
1,2,4,7,14,28 (divisors of 28)
,2,4,7,1,1,5,... (decimals of ,e=2718...)
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Example of Learning from Data
(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

©1,2,4,7,...
— What are succeeding numbers?
1,2,4,7,1,16,... (a,=a,_,+n—1)
1,2,4,7,12,20,... (a,=a,_,+a,_,+1)
1,2,4,7,13,24,... (a,=a,_,+0a,_, +a,_;)
1,2,4,7,14,28 (divisors of 28)
,2,4,7,1,1,5,... (decimals of ,e=2718...)

« 1107 results (!) in the online encyclopedia (https://oeis.org/)
2/34
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Analyze Learning as Scientific Problem

- Which is the correct answer (or )
for succeeding numbers of 1,2, 4,7,... ?

— Any answer is possible!
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Analyze Learning as Scientific Problem

- Which is the correct answer (or )
for succeeding numbers of 1,2, 4,7,... ?

— Any answer is possible!

- We should take two points into consideration:
(i) We need to formalize the problem of “learning”

o There are ( and ) in learning,
which are different from “computation”

(i) Learningisan

o A learner usually never knows that
the current hypothesis is perfectly correct
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Framework of Learning (ML vs DM)

Machine Learning

Data
(Teacher) :> (Learner)
User : Computer

Law that
generalizes
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Framework of Learning (ML vs DM)

Machine Learning

Data
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Computation — Core Engine of Learning/Mining

- Machine learning/data mining is usually achieved using a

- Computing behavior is mathematically formulated by
in 1936

— A. M. Turing, On Computable Numbers, with the Application to the
Entscheidungsproblem, Proceedings of the London Mathematical Society,
42(1), 230-265, 1937

- The model of computation, known as a ,
is developed for simulating computation by human beings
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230 A. M. Turivg [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurixG.
[Received 28 May, 1936.—Read 12 November, 1936.]

The ‘““computable’” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers,
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Computing is normally done by writing certain symbois on paper. We
may suppose this paper is divided into squares like a child’s arithmetic book.
In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. | I assume then that the computation is carried out on
one-dimensional paper, ¢.e. on a tape divided into squares.| I shall also
suppose that the number of symbols which may be printed is finite. If we
were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extentf. The effect of this restriction of the number

of symbols is not very serious. It is always possible to use sequences of

symbols in the place of single symbols. Thus an Arabic numeral such as

1 If we regard a symbol as literally printed on a square we may suppose that the square
80<2<1, 0<y<1. The symbol is defined as a set of points in this square, viz. the
set occupied by printer’s ink. If these sets are restricted to be measurable, we can define
the ¢ distance ”’ between two symbols as the cost of transforming one symbol into the
other if the cost of moving unit area of printer’s ink unit distance is unity, and there is an
infinite supply of ink at = 2, y = 0. With this topology the symbols formn a condition-
ally compact space.
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250 A. M. TurING [Nov. 12,

17 or 999999999999999 is normally treated as a single symbol. Similarly
in any European language words are treated as single symbols (Chinese,
however, attempts to have an enumerable infinity of symbols). The
differences from our point of view between the single and compound symbols
is that the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell at
a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his ¢ state of mind”’ at that moment.
We may suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations. We will also suppose
that the number of states of mind which need be taken into account is finite.
The reasons for this are of the same character as those which restrict the

number of symbols. If we admitted an infinity of states of mind, some of

them will be ¢‘ arbitrarily close ”’ and will be confused. Again, therestriction

'~
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Turing Machine

-« Tape
t

Machine

- The machine repeats the following:

— Read a symbol a of a cell

— Do the following from a and the current state s according to
a set of rules in its memory

o Replace the symbol a at the square
o Move the head
o Change the state s 11/34



Computing vs Learning

- In computation, the process is
— No interaction

o The Turing machine automatically works
according to programmed rules

- A process
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Computing vs Learning

- In computation, the process is
— No interaction

o The Turing machine automatically works
according to programmed rules

- A process

- In learning, there are (teacher and learner)
— Interaction between agents should be considered

o A between a teacher and a learne
ris essentially needed

- An process 12/34



Formalize Learning in Computational Manner

1. What are of learning?

2. How to targets and hypotheses?
3. How are provided to a learner?

4. How does the learner ?

5. When can we say that the learner learns the target?
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Learning of Binary Classifier
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Learning of Binary Classifier
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Example: Perceptron (byF. Rosenblatt, 1958)

- Learning target: two subsets F, G ¢ RYSt.FNG =g
— Assumption: F and G are

o There exists a function (classifier) f,(x) = w,x + b s.t.
fu(x)>0 VxeF,  fix)<o VxeG
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Example: Perceptron (byF. Rosenblatt, 1958)

- Learning target: two subsets F, G ¢ RYSt.FNG =g
— Assumption: F and G are
o There exists a function (classifier) f,(x) = w,x + b s.t.
f.(x)>0 VxE€F, f.(x)<o VxeaG
- Hypotheses: hyperplanes on R

— If we consider a linear equation f(x) = wx + b, each line can be uniquely
specified by a pair of two parameters (w, b) ( )
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Example: Perceptron (byF. Rosenblatt, 1958)

- Learning target: two subsets F, G ¢ RYSt.FNG =g
— Assumption: F and G are
o There exists a function (classifier) f,(x) = w,x + b s.t.
f.(x)>0 VxE€F, f.(x)<o VxeaG
- Hypotheses: hyperplanes on R

— If we consider a linear equation f(x) = wx + b, each line can be uniquely
specified by a pair of two parameters (w, b) ( )

- Data: a sequence of pairs (x,, ¥1), (X5, ¥2), - - .

~ (x;,y,): (a real-valued vector in R?, a label)
- x;€FUG,y;e{1,—1},andy; =1(y; = —1)ifx; € F(x; € G) 15/34



Learning Model for Perceptron

fxX)=wx+b=0
~— A hypothesis, a hyperplane
in general, is uniquely specified
F :
by a pair (w, b)
O

O1T— (XII 1 )
) Data

O

0 O
OO0 ¢

Q
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Learning Procedure of Perceptron

1. w « 0, b « o (orasmall random value) // initialization
2. fori=1,2,3,... do
3.  Receive j-th pair (x;, y;)

4. Computea = 7=1 ijf +b

5. ify;-a<othen // x; is misclassified
6. W e« W+ Y;X; // update the weight
7 beb+y; // update the bias
8. endif

9. end for 17/34



Correctness of Perceptron

- Itis guaranteed that a perceptron always converges
to a correct classifier

— A correct classifier is a function f s.t.
f(x) >0 VxE€F,
f(x) <o Vxea

- Note: there are (infinitely) many functions
that correctly classify F and G

— A perceptron converges to one of them
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Summary: Perceptron

Target

Representation

Data
Algorithm

Correctness

Two disjoint subsets of R

Two parameters (w, b) of linear
equation f(x) =wx + b

Real vectors from target subsets
Perceptron

Convergence theorem
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Example 2: Maximum Likelihood Estimation

- Estimate the probability of a coin being a head in a toss

Target Bernoulli distribution

Representation | Parameter (probability) p

Data Sampling

Algorithm Maximum Likelihood Estimation
p=k/n

Correctness Consistency
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Basic Definitions of Learning

e :a fo: X = {o,1}
— Aclass C of classifiers is usually pre-determined
— Each target can be viewed as the set F, = {a € X | f.(a) = 1}

o F,iscalleda
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Basic Definitions of Learning

e :a fo: X = {o,1}
— Aclass C of classifiers is usually pre-determined
— Each target can be viewed as the set F, = {a € X | f.(a) = 1}

o F,iscalleda
° 'R

— Each hypothesis H € R represents a classifier
- R c =" usually holds (£ is the set of finite strings)
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Basic Definitions of Learning

e :a fo: X = {o,1}
— Aclass C of classifiers is usually pre-determined
— Each target can be viewed as the set F, = {a € X | f.(a) = 1}

o F,iscalleda

. 'R
— Each hypothesis H € R represents a classifier
- R c =" usually holds (£ is the set of finite strings)

- Data: (a,f.(a))
-—aeX
— An example (a,1) is called , (a,0) is called 21/34



Learning Model

% Data
A target classifier\_y, (X1, 0), (X2, 1),
¥ \(concept) f; (x3, 1), (x4, 0), ...

b ) |
\

. ~A class of CHypothesis <— | Learner
" classifiers
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Learning Model (e.g. Perceptron)

R4 Data
A target of linear \_,, (X1,0), (X2, 1),
¥ \equation f, (x3, 1), (x4, 0), ...

b 1 |

\ <
. ~A class of C (w, b) )4— Perceptron

" linearly : _
separable sets (in f{x) = wx + b)
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Gold’s Learning Model
(Identification in the Limit)

- Gold gave the first basic learning model, called

— E. M. Gold, Language identification in the limit,
, 10(5), 447-474, 1967

- This model was originally introduced to analyze
the learnability of

— His motivation was to model infant’s learning process of natural
languages
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INFORMATION AND CONTROL 10, 447-474 '(1967)

Language Identification in the Limit

E Mark Goup*

The RAND Corporation

Language learnability has been investigated. This refers to the fol-
lowing situation: A class of possible languages is specified, together
with a method of presenting information to the learner about an un-
known language, which is to be chosen from the class. The question
is now asked, ‘“Is the information suflicient to determine which of the
possible languages is the unknown language?’’ Many definitions of
learnability are possible, but only the following is considered here: 25/34
Time is quantized and has a finite starting time. At each time the
learner receives a unit of information and i ta make a oo aa +n +ha



Formal Languages

o >: a nonempty finite set
— Eachelementa € X is called a

. w = a,d,...d,: afinite sequence of symbols
- g, whose length is 0

The set of words ¥* (with €) and ¥ (without &)
>*={a,a,...a, | a;,€X,n=0}

" ={a,a,...a, | a;€Z,n=1}=3"\ {¢}

. £ 3
: : a subset of 26/34



Representation of Languages

We connect syntax and semantics using a mapping f

For a hypothesis H € R, f(H,w)isoor1forw € *

- Hisa of a classifier
— wis a (binary) code of the input to H

c L(H)={weX"|f(Hw)=1)}

R is usually a

— There is an algorithm that enumerates all elements of R
- R is often identified with N

o Each natural number a classifier (hypothesis)
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Setting of Gold’s Learning Model

- Aclass of languagesC c {A| Ac =" }is chosen

- Foralanguage L € C, an infinite sequence 0 = (x,, ¥,), (X5, ¥5), - .
isa of L if

(i) {x;,%y,...}=2%"
(i) yj=1 & x;elLforalli

— oli]=(x,, ¥.), ..., (x;, ¥;) (@ prefix of o)

- A is a procedure M that receives o and
generates an infinite sequence of hypothesesy = H,, H,, ...

— M outputs H, if it gets o[ /]
28/34



ldentification in the Limit

- If y converges to some hypothesis H and H represents L,
we say that

- If M identifies any L € C in the limit,
we say that
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Basic Strategy: Generate and Test

- Input: a complete presentation o of a language L
- OQutput:y=H,, H,,...

l.1e1,5<2

2. Repeat

3. S« Sui{lx,yi)}

4, k< min{je N | L(H(j)) consistent with S }
5. // H(j) is a hypothesis encoded by a natural number j
6. H; « H(k)and output H;

/ | < i +1

8. until forever 30/34



Power of Generate and Test Strategy

- For any class C of languages,

— That s, Generate and Test strategy identifies
every language L € C in the limit

- Unfortunately, this strategy is very inefficient

— More intelligent strategy can be designed
for each learning target

— One of the most important tasks in studies of
machine learning!
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Learning from Positive Data

- In many cases, in particular in data mining,
we obtain positive data

— Imagine supervised vs unsupervised learning

- A of alanguage L € C
is an infinite sequence x,, x,,... s.t. L = {x;, x,,...}

- If y (an infinite sequence of hypotheses of a learner M) converges to
a hypothesis Hs.t. L(H) = L,
we say that
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Limitation of Learning from Positive Data

- Consider the following class C

(i) All finite languages are included in C
(ii) Atleast one infinite language is included in C

— Cis called

- Gold proved that a

- e.g. X = {a}, C contains all finite languages and {a" | n = 1}

- Although this fact shows a limitation, there still exist rich classes of
interesting languages

— For example, 33/34



References

- If you are interested in computational learning theory, the following
books might be interesting:

- MWERR, RS, W, StERIFE, 1H/EEE, 2001
— S.Jain, D. N. Osherson, J. S. Royer, A. Sharma, Systems That Learn, A
Bradford Book, 1999

- These books are not necessarily for this lecture
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