

Inter-University Research Institute Corporation / Research Organization of Information and Systems

National Institute of Informatics

Graph Mining Data Mining 03 (データマイニング)

Today's Outline

- A primer of graphs
 - Subgraph isomorphism
- Graph mining
 - How to find (sub)graphs from graph databases?
 - Revisiting the Apriori principle to avoid combinatorial explosion
 - The canonical DFS code for graph representation

Graph Mining: Overview

Graph Mining: Overview

Graph Mining: Overview

Graphs

- An (unlabeled) graph G = (V, E)
 - V: a vertex set, $E \subseteq V \times V$: an edge set
 - For $(u, v) \in E$, u, v are adjacent, v is a neighbor of u
 - (u, v) and (v, u) are identified if the graph is undirected
 - $N(v) = \{u \in V \mid (v, u) \in E\}$, the set of all neighbors
- A labeled graph $G = (V, E, \varphi)$

- $\varphi: V \cup E \rightarrow \Sigma$, where Σ is the set of vertex and edge labels

Subgraph Isomorphism

- A graph G' = (V', E') is a subgraph of G = (V, E), denoted by $G' \sqsubseteq G$, if $V' \subseteq V$ and $E' \subseteq (V' \times V') \cap E$
- A graph G' is isomorphic to G if there exists a bijective function $\pi: V' \to V$ such that

(i)
$$(u, v) \in E' \iff (\pi(u), \pi(v)) \in E$$

(ii) $\forall v \in V', \varphi(v) = \varphi(\pi(v))$
(iii) $\forall (u, v) \in E', \varphi(u, v) = \varphi(\pi(u), \pi(v))$

- If π is injective but not surjective: $G \setminus \text{range}(\pi) \neq \emptyset$, G' is subgraph isomorphic to G, denoted by $G' \sqsubseteq G$
 - Testing whether $G' \subseteq G$ is NP-complete (computationally heavy!) 4/17

Subgraph Isomorphism

Subgraph Isomorphism

Subgraph Mining

- In graph mining, pattern ↔ (sub)graph
- S: the set of graphs (can be infinite), a dataset D is a multiset of S
 - *D* is a collection of graphs: $D = \{G_1, G_2, \dots, G_n\}$
- The frequency $\eta(G)$ of a graph G is obtained as $\eta(G) = \frac{|\{G_i \in D \mid G \sqsubseteq G_i\}|}{|D|} = \frac{1}{|D|} \sum_{H \supseteq G} \mathbf{1}_D(H)$
- Frequent subgraph mining problem: Given a threshold σ , enumerate the set $F = \{G \in S \mid \eta(G) \ge \sigma\}$

Two Problems in Graph Mining

1. Combinatorial explosion of the search space

- More massive than itemset mining
- The number of subgraphs with *m* vertices: $O(2^{m^2})$
 - $O(m^2)$ possible edges
- The number of subgraphs with *m* vertices and *s* labels: $O(s^{m^2})$
- 2. Subgraph isomorphism checking
 - When we obtain a subgraph G', computing $\eta(G')$ is heavy as we need to repeat subgraph isomorphism checking for every $G_i \in D$
 - Solution: Use the Apriori principle and the (canonical) DFS code 7/17

Graph Mining Algorithms

- The first algorithm that achieves graph mining is AGM
 - Inokuchi, A. and Washio, T. and Motoda, H., An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data, PKDD 2000
- The standard method is gSpan
 - Yan, X. and Han, J., gSpan: Graph-based substructure pattern mining, ICDM 2002
- The state-of-the-art is GASTON
 - Nijssen, S. and Kok, J. N., A Quickstart in Frequent Structure Mining Can Make a Difference, SIGKDD 2004

DFS Code (1/3)

- The DFS code represents a graph G as a sequence of tuples based on depth first search (DFS)
 - There can be multiple DFS codes for a single graph
- Perform DFS traversal on a graph G and index each vertex according to the order of discovery in the DFS
 - Edges included in the DFS are forward edges, other edges are backward edges
- Each edge (i, j) is represented as a tuple $(i, j, \varphi(i), \varphi(j), \varphi(i, j))$
 - i < j is it is a forward edge and i > j if backward

DFS Code (2/3)

- Introduce the (total) order "<_t" between two tuples $t_1 = (i_1, j_1, \varphi(i_1), \varphi(j_1), \varphi(i_1, j_1))$ and $t_2 = (i_2, j_2, \varphi(i_2), \varphi(j_2), \varphi(i_2, j_2))$
- First, introduce the order $<_e$ between $e_1 = (i_1, j_1)$ and $e_2 = (i_2, j_2)$: $e_1 <_e e_2 \iff$
 - If both e_1 and e_2 are forward edges, (a) $j_1 < j_2$ or (b) $j_1 = j_2$ and $i_1 > i_2$
 - If both e_1 and e_2 are backward edges, (a) $i_1 < i_2$ or (b) $i_1 = i_2$ and $j_1 < j_2$
 - If e_1 and e_2 are forward and backward edges, $j_1 \le i_2$
 - If e_1 and e_2 are backward and forward edges, $i_1 < j_2$
- Introduce some total order $<_i$ into triples of labels $(\varphi(i_1), \varphi(j_1), \varphi(i_1, j_1))$

DFS Code (3/3)

- $t_1 = (i_1, j_1, \varphi(i_1), \varphi(j_1), \varphi(i_1, j_1)) <_t t_2 = (i_2, j_2, \varphi(i_2), \varphi(j_2), \varphi(i_2, j_2)) \iff$
 - (i) $(i_1, j_1) <_e (i_2, j_2)$, or (ii) $(i_1, j_1) = (i_2, j_2)$ and $(\varphi(i_1), \varphi(j_1), \varphi(i_1, j_1)) <_I (\varphi(i_2), \varphi(j_2), \varphi(i_2, j_2))$
- The DFS code of a graph is a sequence of tuples sorted according to the order "<"

Canonical DFS Code

- Finally, introduce the order < between two DFS codes $\mathbf{t} = (t_1, t_2, \dots, t_m)$ and $\mathbf{t}' = (t'_1, t'_2, \dots, t'_n)$
- $t < s \iff$ (i) or (ii)
 - (i) $\exists k \text{ s.t. } 0 \le k \le \min(m, n), t_1 = t'_1, t_2 = t'_2, \ldots, t_{k-1} = t'_{k-1}, t_k < t'_k$ (ii) $m \le n \text{ and } t_1 = t'_1, t_2 = t'_2, \ldots, t_m = t'_m$
- The canonical DFS code of a graph G is the smallest DFS code of G according to the order "<"

Canonical DFS Code

Rightmost Path Extension

- During the DFS traversal on a graph *G*, the rightmost path is the path from the root to the rightmost leaf (leaf with the largest index)
- Rightmost path extension achieves systematic candidate graph generation from an existing graph *G* by either
 - (i) adding a backward edge from the rightmost vertex to other vertex on the rightmost path, or
 - (ii) adding a forward edge from a vertex on the rightmost path

The gSpan Algorithm

	Algorithm 1: Algorithm gSpan
	// $C \leftarrow \emptyset$ for the initial call
1	gSpan(C, D, σ)
2	$\mathcal{E} \leftarrow \text{RightmostPathExtension}(C, D)$
3	foreach $(t, \eta_t) \in \mathcal{E}$ do
4	$ C \leftarrow C \cup \{t\}$
5	$\eta(C) \leftarrow \eta_t$
б	if $\eta(C) > \sigma$ and isCanonical(C) then
7	gSpan(C, D, σ)

Subprocesses in gSpan

- RightmostPathExtension(C, D)
 - Receive a graph G represented by its DFS code C and a dataset D
 - Return all possible rightmost path extensions of G
 - A set of pairs of tuples and frequencies $\mathcal{E} = \{(t_1, \eta_{t_1}), (t_2, \eta_{t_2}), \dots, (t_m, \eta_{t_m})\}$
- isCanonical(C)
 - Receive a DFS code C
 - Return TRUE if C is canonical and FALSE otherwise

Conclusion

- gSpan achieves graph mining
- The keys are:
 - Canonical DFS codes
 - Rightmost path extension
 - Combine them with the Apriori principle