
November 10, 2017

GraphMining
Data Mining 03 (データマイニング)

Mahito Sugiyama (杉山麿人)

Today’s Outline

• A primer of graphs
– Subgraph isomorphism

• Graph mining
– How to find (sub)graphs from graph databases?
– Revisiting the Apriori principle to avoid combinatorial explosion
– The canonical DFS code for graph representation

1/17

GraphMining: Overview

2/17

GraphMining: Overview

2/17

GraphMining: Overview

Subgraph

Support: 4

Support: 2

2/17

Graphs

• An (unlabeled) graph G = (V , E)
– V : a vertex set, E ⊆ V × V : an edge set
– For (u, v) ∈ E, u, v are adjacent, v is a neighbor of u

◦ (u, v) and (v , u) are identified if the graph is undirected
– N(v) = {u ∈ V ∣ (v , u) ∈ E}, the set of all neighbors

• A labeled graph G = (V , E , ϕ)
– ϕ ∶ V ∪ E → Σ, where Σ is the set of vertex and edge labels

3/17

Subgraph Isomorphism

• A graph G′ = (V ′ , E ′) is a subgraph of G = (V , E), denoted by G′ ⊑ G,
if V ′ ⊆ V and E ′ ⊆ (V ′ × V ′) ∩ E

• A graph G′ is isomorphic to G if there exists a bijective function
π ∶ V ′

→ V such that
(i) (u, v) ∈ E ′ ⟺ (π(u), π(v)) ∈ E
(ii) ∀v ∈ V ′, ϕ(v) = ϕ(π(v))
(iii) ∀(u, v) ∈ E ′, ϕ(u, v) = ϕ(π(u), π(v))

• If π is injective but not surjective: G \ range(π) /= ∅,
G′ is subgraph isomorphic to G, denoted by G′ ⊑ G
– Testing whether G ′ ⊑ G is NP-complete (computationally heavy!) 4/17

Subgraph Isomorphism

5/17

Subgraph Isomorphism

Isomorphism Subgraph isomorphismsSubgraph isomorphisms

5/17

SubgraphMining

• In graph mining, pattern ⟺ (sub)graph

• S: the set of graphs (can be infinite), a dataset D is a multiset of S
– D is a collection of graphs: D = {G1 ,G2 , . . . ,Gn}

• The frequency η(G) of a graph G is obtained as

η(G) = ∣{G i ∈ D ∣ G ⊑ G i}∣∣D∣ = 1∣D∣ ∑H⊒G 1D(H)
• Frequent subgraphmining problem:
Given a threshold σ, enumerate the set F = {G ∈ S ∣ η(G) ≥ σ}

6/17

Two Problems in GraphMining

1. Combinatorial explosion of the search space
– More massive than itemset mining

– The number of subgraphs with m vertices: O(2m2)
– O(m2) possible edges

– The number of subgraphs with m vertices and s labels: O(sm2)
2. Subgraph isomorphism checking

– When we obtain a subgraph G ′, computing η(G ′) is heavy as
we need to repeat subgraph isomorphism checking for every G i ∈ D

• Solution: Use the Apriori principle and the (canonical) DFS code
7/17

GraphMining Algorithms

• The first algorithm that achieves graph mining is AGM
– Inokuchi, A. andWashio, T. andMotoda, H., An Apriori-Based Algorithm
for Mining Frequent Substructures from Graph Data, PKDD 2000

• The standard method is gSpan
– Yan, X. and Han, J., gSpan: Graph-based substructure pattern mining,

ICDM 2002

• The state-of-the-art is GASTON
– Nijssen, S. and Kok, J. N., A Quickstart in Frequent Structure Mining
CanMake a Difference, SIGKDD 2004

8/17

DFS Code (1/3)

• The DFS code represents a graph G as a sequence of tuples
based on depth first search (DFS)
– There can be multiple DFS codes for a single graph

• Perform DFS traversal on a graph G and index each vertex according
to the order of discovery in the DFS
– Edges included in the DFS are forward edges,

other edges are backward edges

• Each edge (i , j) is represented as a tuple (i , j, ϕ(i), ϕ(j), ϕ(i , j))
– i < j is it is a forward edge and i > j if backward

9/17

DFS Code (2/3)

• Introduce the (total) order “<t” between two tuples
t1 = (i1 , j1 , ϕ(i1), ϕ(j1), ϕ(i1 , j1)) and t2 = (i2 , j2 , ϕ(i2), ϕ(j2), ϕ(i2 , j2))

• First, introduce the order <e between e1 = (i1 , j1) and e2 = (i2 , j2):
e1 <e e2 ⟺

– If both e1 and e2 are forward edges, (a) j1 < j2 or (b) j1 = j2 and i1 > i2
– If both e1 and e2 are backward edges, (a) i1 < i2 or (b) i1 = i2 and j1 < j2
– If e1 and e2 are forward and backward edges, j1 ≤ i2
– If e1 and e2 are backward and forward edges, i1 < j2

• Introduce some total order <l into triples of labels(ϕ(i1), ϕ(j1), ϕ(i1 , j1)) 10/17

DFS Code (3/3)

• t1 = (i1 , j1 , ϕ(i1), ϕ(j1), ϕ(i1 , j1)) <t t2 = (i2 , j2 , ϕ(i2), ϕ(j2), ϕ(i2 , j2)) ⟺

(i) (i1 , j1) <e (i2 , j2), or
(ii) (i1 , j1) = (i2 , j2) and (ϕ(i1), ϕ(j1), ϕ(i1 , j1)) <l (ϕ(i2), ϕ(j2), ϕ(i2 , j2))

• The DFS code of a graph is a sequence of tuples sorted according to
the order “<”

11/17

Canonical DFS Code

• Finally, introduce the order < between two DFS codes
t = (t1 , t2 , . . . , tm) and t′ = (t′1 , t′2 , . . . , t′n)

• t < s ⟺ (i) or (ii)
(i) ∃k s.t. 0 ≤ k ≤ min(m, n), t1 = t′1 , t2 = t′2 , . . . , tk−1 = t′k−1 , tk < t′k
(ii) m ≤ n and t1 = t

′
1 , t2 = t

′
2 , . . . , tm = t′m

• The canonical DFS code of a graph G is the smallest DFS code of G
according to the order “<”

12/17

Canonical DFS Code

Noncanonical Canonical Noncanonical

1

2

3 4

t1 = (1, 2, ●, ●)
t2 = (2, 3, ●, ●)
t3 = (2, 4, ●, ●)
t4 = (4, 1, ●, ●)

1

2

4 3

t1 = (1, 2, ●, ●)
t2 = (2, 3, ●, ●)
t3 = (3, 1, ●, ●)
t4 = (2, 4, ●, ●)

2

3

4 1

t1 = (1, 2, ●, ●)
t2 = (2, 3, ●, ●)
t3 = (3, 1, ●, ●)
t4 = (3, 4, ●, ●)

13/17

Rightmost Path Extension

• During the DFS traversal on a graph G, the rightmost path is the
path from the root to the rightmost leaf (leaf with the largest index)

• Rightmost path extension achieves systematic candidate graph
generation from an existing graph G by either
(i) adding a backward edge from the rightmost vertex to other vertex on

the rightmost path, or
(ii) adding a forward edge from a vertex on the rightmost path

14/17

The gSpan Algorithm
Algorithm 1: Algorithm gSpan
// C ← ∅ for the initial call

1 gSpan(C , D, σ)
2 E ← RightmostPathExtension(C , D)
3 foreach (t, ηt) ∈ E do
4 C ← C ∪ {t}
5 η(C) ← ηt

6 if η(C) > σ and isCanonical(C) then
7 gSpan(C , D, σ)

15/17

Subprocesses in gSpan

• RightmostPathExtension(C , D)
– Receive a graph G represented by its DFS code C and a dataset D
– Return all possible rightmost path extensions of G

◦ A set of pairs of tuples and frequencies
E = {(t1 , ηt1), (t2 , ηt2), . . . , (tm , ηtm)}

• isCanonical(C)
– Receive a DFS code C
– Return TRUE if C is canonical and FALSE otherwise

16/17

Conclusion

• gSpan achieves graph mining

• The keys are:
– Canonical DFS codes
– Rightmost path extension
– Combine them with the Apriori principle

17/17

	Today's Outline
	Graph Mining: Overview
	Graphs
	Subgraph Isomorphism
	Subgraph Isomorphism
	Subgraph Mining
	Two Problems in Graph Mining
	Graph Mining Algorithms
	DFS Code (1/3)
	DFS Code (2/3)
	DFS Code (3/3)
	Canonical DFS Code
	Canonical DFS Code
	Rightmost Path Extension
	The gSpan Algorithm
	Subprocesses in gSpan
	Conclusion

