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Today’s Outline

- A primer of graphs
— Subgraph isomorphism

- Graph mining
- How to find (sub)graphs from graph databases?

— Revisiting the Apriori principle to avoid combinatorial explosion
— The canonical DFS code for graph representation
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Graph Mining: Overview

4 Y4 )
- AN J
4 Y4 )
- AN J

(

-

~

\_
-~

~

J
~

\_

J

2/17



Graph Mining: Overview

4 )

\\\\\

\
\
\
\
\
\

-------

2/17



Graph Mining: Overview
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Graphs

« An (unlabeled) graph G = (V, E)

— V:avertexset, E € V x V:an edge set
- For (u,v) € E, u,v are ,visa of u

o (u,v)and (v, u) are identified if the graph is undirected
— N(v) = {u € V | (v,u) € E}, the set of all neighbors

- Alabeled graph G = (V, E, ¢)
- @ :VUE - %, where X is the set of vertex and edge labels
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Subgraph Isomorphism

- AgraphG' = (V',E')isa of G = (V, E), denoted by G' E G,
ifv'evandE c (V' xV')nE

- Agraph G'is to G if there exists a bijective function
m:V' = Vsuch that

(i) (u,v)€e E' = (m(u),n(v)) €eE
(i) Yv e V', o(v) = ¢(m(v))
(iii) Y(u,v) € E, o(u,v) = @(m(u), m(v))

- If mis injective but not surjective: G \ range(m) # 2,
G'is to G, denoted by G' E G

— Testing whether G' C G is (computationally heavy!)  4/17



Subgraph Isomorphism
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Subgraph Isomorphism

ubgraph isomorphisms
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Subgraph Mining

« In graph mining,

- S: the set of graphs (can be infinite), a dataset D is a multiset of S
— Dis a collection of graphs: D = {G,, G,, ..., G,}

- The n(G) of a graph G is obtained as
{GieD|GEG;} _
n(G) = 1
D] |D| ZG ol

- Frequent subgraph mining problem:
Given a threshold o, enumerate theset F = {G € S | n(G) = o}
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Two Problems in Graph Mining

1. of the search space
— More massive than itemset mining

2

— The number of subgraphs with m vertices: O(2" )
- O(m?®) possible edges

2

— The number of subgraphs with m vertices and s labels: O(s™ )

— When we obtain a subgraph G', computing n(G') is heavy as
we need to repeat subgraph isomorphism checking for every G; € D

- Solution: Use the and the 7/17



Graph Mining Algorithms

- The first algorithm that achieves graph mining is

— Inokuchi, A. and Washio, T. and Motoda, H., An Apriori-Based Algorithm
for Mining Frequent Substructures from Graph Data, PKDD 2000

- The standard method is

- Yan, X. and Han, J., gSpan: Graph-based substructure pattern mining,
ICDM 2002

- The state-of-the-art is

— Nijssen, S. and Kok, J. N., A Quickstart in Frequent Structure Mining
Can Make a Difference, SIGKDD 2004
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DFS Code (1/3)

- The represents a graph G as a sequence of tuples
based on depth first search (DFS)

— There can be multiple DFS codes for a single graph

- Perform DFS traversal on a graph G and index each vertex according
to the order of discovery in the DFS

— Edgesincluded in the DFS are
other edges are

- Each edge (i, j) is represented as a tuple (i, j, ¢(i), @(j), (i, j))
— i< jisitisaforward edge andi > jif backward
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DFS Code (2/3)

- Introduce the (total) order “<;” between two tuples
ty = (i1, jr, @(ir), @(jr), @liv, j1)) and ty = (iz, j2, @(i2), @(j2), @li2, j2))

- First, introduce the order <, between e, = (i, j;) and e; = (i3, j>):
€1 < €7 &
— If both e; and e, are forward edges, (a) j; < j, or (b) j; = j, and i; > i,
— If both e; and e, are backward edges, (a) i; < i, or (b) i; =iy and j; < j;
— If e; and e, are forward and backward edges, j; < i,
— If e; and e, are backward and forward edges, i; < j,

- Introduce some total order <, into triples of labels
((P(i1),(P(j1),(P(i1,j1)) 10/17



DFS Code (3/3)

o t1 = (i1, j1, (1), @(ja ), @(iv, ja)) <e t2 = (i, j2, @(i2), @(j2), @lins j2)) &

(i) (i1, j1) <e (i2, j2)s OF
(i) (i1, j1) = (i, j2) and (@(ir), @(j1), @i, j1)) <i (@(i2), @(j2), @(iz, j2))

- The DFS code of a graph is a sequence of tuples sorted according to
the order “<”
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Canonical DFS Code

- Finally, introduce the order < between two DFS codes
t=(t,t,...,.tp)and t =(t;, t,,...,t,)

e t<s & (i)or(ii)
(i) Fkst.0 <k <min(m,n), t,=t,, t,=t,, ..., t_,=t,_,, t, <t,
(i) m<nandt,=t, t,=t,, ..., t,, =t

- The of a graph G is the smallest DFS code of G
according to the order “<”
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Canonical DFS Code

Noncanonical
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Rightmost Path Extension

- During the DFS traversal on a graph G, the is the
path from the root to the rightmost leaf (leaf with the largest index)

: achieves systematic candidate graph
generation from an existing graph G by either

(i) adding a backward edge from the to other vertex on
the rightmost path, or

(i) adding a forward edge from a vertex on the rightmost path
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The gSpan Algorithm

Algorithm 1: Algorithm gSpan

// C « @ for the initial call

gSpan(C, D, o)

£ « RightmostPathExtension(C, D)

foreach (t,n;) € £ do

C <« Cu{t}

n(C) < n.

if n(C) > o0 and isCanonical(C) then
| gSpan(C, D, o)
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Subprocesses in gSpan

- RightmostPathExtension(C, D)

— Receive a graph G represented by its DFS code C and a dataset D
— Return all possible rightmost path extensions of G

o A set of pairs of tuples and frequencies
g = {(t‘ll rlt1 )I (t2I ntz)l e (tml nl’m )}

- isCanonical(C)

— Receive a DFS code C
— Return TRUE if C is canonical and FALSE otherwise
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Conclusion

- gSpan achieves graph mining

- The keys are:

— Canonical DFS codes
— Rightmost path extension
— Combine them with the Apriori principle
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