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Today’s Outline

- Boltzmann Machines (Ising models):
A fundamental probabilistic model of deep learning

- Probabilistic models on Posets
— Relationship with pattern mining

- Relationship to the deep architecture
— DBM (Deep Boltzmann Machines)
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Boltzmann Machines

- A (BM) is represented as an undirected graph
G=(V,E)withV ={1,2,...,nyand E € {{i, j} | i, j € V}
- The ®:{0,1}" - R of a BM G is defined as
(D(X;G) = — Z 9,'X,' — Z Gin,'Xj
eV {i,j}eE
- x= (X, Xy ..., x,) € {0,1}"
—0=(6,,0,...,0, 0,0, ...,6,,)isa for
vertices (bias) 6., ..., 6, and edges (weight) 6,,, .. ., 6, .
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Boltzmann Distribution

- The probability p(x; 6) is obtained for each x € {o,1}" as

p(x: 6) = exp(—®(x, 9))

Z(0)
- Z(0)is a such that
2(6) = )_exp(~0(x;0))
x€{o,1}"

to ensure the condition ) , ., 1» p(x) =1
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Outcome Space of BM
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Parameters 6
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Probability Computation
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Log-Linear Model

- BM is a special case of the in statistics

. Let each set x € 2" be the set of indices of “1” of x € {0,1}"

- The B={xe2"\{@}||x|=10orxeE}
- The Boltzmann distribution is described as
logp(x) = ) 6(s w(6) = —6(2) = log Z(0)
SCX
— of the probability is obtained by the combination of

coefficients 6
- O(s)=o0ifs ¢B
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Learning of BM by MLE

- Given a dataset D = {x,, x,, ..., Xy}, the objective of learning
Boltzmann machines is to maximize the

( )
N

Find @ that maximizes Hp(x,-; @) =p(x,;0)-p(x,;0)----- p(xy;0)

— The probability of generating the given dataset by a BM

- The is usuaIIy treated

Lp(0) = log H (x;;0) = Z log p(x;; )
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Gradient of 6

- The log-likelihood is

ZﬁmpL,=§[ZeM—

- The of O(s) for each s € B is obtained as
oLp(6
Lo =1 € D12 5H - Nal),

_ _ | Eg[s'1=Y,5'p(s; @) = Pr(s' =)
_ZP(X)_[EQSS =Y . s's'p(s;0) = Pr(s' =1and s’ =1)
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Learning Equation of BM

- Lp(0)is maximized when the gradient is zero <

1
NHX/' €D | x; 2 s}| = n(s)

A(s) = n(s)
foralls € B
— This is known as
- A(s) coincides with the of a pattern s used in itemset mining
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KL Divergence Minimization

- Given two distributions P Q the KL divergence from P to Q:

Dy, (P, Q) = ZP |09

- Given adataset D = {x,, x,,..., xy}, the Pis
) 1
plx) = ~l{xi € D] x; = x}

- Maximizing the (log)likelihood is equivalent to minimizing the
: Minpes(s) DL (P, P)
— &S(B): the set of Boltzmann distributions
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Optimization: Gradient Ascent

Algorithm 1: Learning of BM by gradient ascent

Initialize @ with some values;
t < 0

repeat

foreach s € Bdo

| 0'(s) « 81(s) + &(fi(s) - n(s));
t<t+1

until 'Y = '),
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Combinatorial Explosion

- The serious problem of learning BMs: Il

- The time complexity of computation of n(x):

n(x)=) pls),

$2X
is 2°1") and it is impossible to evaluate
— This is required to get the gradient f(x) — n(x)

- Solution: approximate it by
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Gibbs Sampling (1/2)

- A algorithm

- We can generate samples from the current Boltzmann distribution

— nvariables are dependent with each other
— The partition function is not needed

- After obtaining an enough sample S = {s,,s,,..., sy} by Gibbs
sampling, n(s) can be approximated as

nls) = 22 H{s; €5 | 525}
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Gibbs Sampling (2/2)

- Forx = (x',x%,...,x"), the conditional probability of the ithe
variable being x' with fixing others is
1 =1 i i+ n
p(x,....x ,x,x ,...,x)

p(x', ... x700,x* o x™) + p(xt, o x 1, X LX)

pPi =
_ exp(A; x;)
1+ exp(h;)’

)\,‘ = 6,’ + Z GUXJ
J#i
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Algorithm 2: Gibbs Sampling

Initialize x with some values;

repeat
foreachie€ {1,2,...,n}do
if p; >arandomvalueu € [o,1] then
x <1
else
x <0

| Output x and use it for the next initial vector

until getting enough sample;
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Introducing Hidden Variables

- To increase the representation power of the BM, we can introduce

- When there are hidden nodes, the (log-)likelihood is maximized
with respect to the distribution in which the hidden variables are
marginalized out

- Let V and H be visible and hidden nodes

- The learning equation forx =vu hwithvcVandh c His

> plh1s)ls) = nlx)
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Outcome Space with Hidden Variable
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Restricted Boltzmann Machines (RBMs)
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Learning of RBMs

- Given a dataset D = {v(,), ..., v(y)}, learning equations in RBMs are

plv) = n(v)
1 Y
2. S190,) = n(h)
1 , j
v HZ Viwsig(A ) = n(vuh),  where
| exp(A ) | |
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Deep Boltzmann Machines (DBMs)
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