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Today’s Outline

• Clustering methods will be introduced

• K-means, EM algorithm, DBSCAN, hierarchical clustering

• Evaluation of clustering results
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Clustering

• Goal: Partition objects into several groups, where
those in the same group are similar with each other

– A typical problem in unsupervised learning

• Given a dataset D = {x 1 , x 2 , . . . , xn}, x i ∈ Rn

• Clustering: Find a partition C = {C1 , C2 , . . . , CK} of D s.t.

⋃
i∈{1,2, . . . ,K} C i = D and C i ∩ C j = ∅

– Each C i ⊆ D is called a cluster
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K-means

• K-means is one of the most heavily used algorithm

• The sum of squared errors scoring function:

SSE(C) = K

∑
k=1

∑
x∈C i

∥x − µk∥2 = K

∑
k=1

∑
x∈C i

n

∑
j=1

(x j − µ j
k)2

– µk is the mean vector of a cluster Ck

– Dissimilarity is measured by the squared Euclidean distance

• K-means tries to find the optimal clustering C∗ s.t.
C∗ = argmin

C
SSE(C)
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Pseudocode of K-means

• Input: Dataset D, Number of clusters K

• Output: Clustering C

1. Randomly initialize K centroids: µ1 , µ2 , . . . , µK

2. repeat
3. Ck ← ∅ for all k ∈ {1, 2, . . . , K}
4. for each x ∈ D do // cluster assignment
5. k∗ ← argmink∈{1,2, . . . ,K} ∥x − µk∥2

6. Ck∗ ← Ck∗ ∪ {x}
7. for each k ∈ {1, 2, . . . , K} do // centroid update
8. µk ← (1/∣Ck ∣)∑x∈Ck x
9. until cluster assignment does not change 4/31



K-means on 1-Dimensional Data
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K-means on 1-Dimensional Data
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Notes on K-means

• K-means is a classic algorithm (proposed in 1967!),
while is still the state-of-the-art
– It is fast; its time complexity is O(npK)
– Easy to use; there is only one parameter K

• Drawbacks
– Its result may be a local optimum, not global
– Its result depends on initialization
– It cannot detect non-spherical clusters
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K-means++

• K-means++ is an algorithm for selecting initial clustering
– This can alleviate the problem of finding worse clustering than optimal

1. Randomly select a data point x ∈ D and µ1 ← x
2. for each k = {2, 3, . . . , K} do
3. for each x ∈ D do D(x) ← mini∈{1,2, . . . ,k} ∥x − µ i∥2

4. for each x ∈ D do p(x) ← D(x)/∑s∈D D(s)
5. Select µk from D using the probability distribution p(x) for each x ∈ D
6. Perform K-means using µ1 , µ2 , . . . , µK as the initial cluster centers
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EM Clustering

• In K-means, each point either belongs to a cluster or not
→ hard clustering

• How about obtaining the probability of cluster membership?
→ soft clustering

• The EM (Expectation-Maximization) clustering with a mixture of
Gaussian distributions is the representative method
– It is sometimes called soft K-means
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The General EM Algorithm (1/2)

• Input: A joint distribution p(X , Y ; θ) over observed variables X
and hidden (latent) variables Y , with parameters θ

Goal: Maximize the likelihood of p(X ; θ)
• This is difficult as the marginal distribution

log p(X ; θ) = log (∑
Y

p(X , Y ; θ))
should be optimized
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The General EM Algorithm (2/2)

• Input: A joint distribution p(X , Y ; θ) over observed variables X
and hidden (latent) variables Y , with parameters θ

Goal: Maximize the likelihood of p(X ; θ) (may be local optimum)

1. Set an initial parameter θ(t) with t = 0
2. Expectation step (E-step): Evaluate p(Y ∣ X ; θ(t))
3. Maximization step (M-step): Evaluate θ(t+1) such that

θ(t+1) = argmaxθ (t+1)Q(θ(t+1) , θ(t))
– Q(θ(t+1) , θ(t)) = ∑Y p(Y ∣ X ; θ(t)) log p(X , Y ; θ(t+1))

4. θ(t+1)
← θ(t), t ← t + 1 and repeat until convergence 11/31



Multivariate Normal Distribution

• Probability density function of 1D normal distribution

f (x ; µ, σ2) = 1√
2πσ

exp (− (x − µ)2
2σ2 )

– x ∈ R: mean, σ2 ∈ R: variance

• Probability density function of multivariate normal distribution

f (x ; µ, Σ) = 1(2π)n/2∣Σ∣1/2 exp (− (x − µ)TΣ−1(x − µ)
2

)
– µ ∈ Rn : the cluster mean vector
– Σ ∈ Rn×n : the covariance matrix 12/31



Gaussian Mixture Model

• The Gaussian mixture model over K clusters:

f (x) = ∑K

k=1
f (x ∣ µk , Σk)P(Ck)

– P(Ck ) is the mixture parameter satisfying∑K
k=1 P(C i ) = 1,

corresponding to the latent variable

• We denote the set of all parameters by θ such that
θ = {µ1 , Σ1 , P(C1), µ2 , Σ2 , P(C2), . . . , µK , ΣK , P(CK )}

• Given a dataset D, the objective is to maximize the log-likelihood:

max
θ

LD(θ) = max
θ

∑N

i=1
log f (x i )
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EM Clustering

• Given the current θ, the E-step:

w i k = P(Ck ∣ x i ) = P(Ck and x i )
P(x i ) =

f (x i ; µk , Σk)P(Ck)
f (x i )

for each data point x i and each cluster Ck

• The M-step:

µk =
∑N

i=1 w i k x i

∑N
i=1 w i k

, Σk =
∑N

i=1 w i k∥x i − µk∥2
∑N

i=1 w i k

, P(Ck) = ∑N
i=1 w i k

N
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Clusters that K-means cannot find
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DBSCAN

• DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
is a density-based clustering algorithm

• ε-neighborhood: A ball of radius ε around a point x ∈ Rn ,
Nε(x) = B(x , ε) = { y ∈ D ∣ d(x , y) ≤ ε }
– x is a core point if ∣Nε(x)∣ ≥ MinPts
– x is directly density reachable from y if x ∈ Nε(y)

• x is density reachable from y if there is a chain of points x 1 , x 2 , . . . , x l
s.t. x 1 = y, x l = x , and x i+1 is directly density reachable from x i

– x and y are in the same cluster if y is density reachable from x
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Cluster Construction in DBSCAN

MinPts = 3
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Cluster Construction in DBSCAN
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Pseudocode of DBSCAN (1/2)

1. Dcore ← ∅; k ← 0

2. for each x ∈ D do // find core points

3. if ∣Nε(x)∣ ≥ MinPts then Dcore ← Dcore ∪ {x}
4. for each x ∈ Dcore do

5. k ← k + 1; DensityConnected(x , k)
6. C ← {C1 , . . . , Ck}, where C i ← { x ∈ D ∣ id(x) = i }
7. DNoise ← { x ∈ D ∣ id(x) is not assigned }
8. return C, DNoise 18/31



Pseudocode of DBSCAN (2/2)

DensityConnected(x , k)
1. for each y ∈ Nε(x) do
2. id(y) ← k

3. if y ∈ Dcore then DensityConnected(y, k)
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DBSCANwith ε = 14 andMinPts = 10
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DBSCANwith ε = 12 andMinPts = 10
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DBSCANwith ε = 16 andMinPts = 10
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Notes on DBSCAN

• DBSCAN can find clusters of arbitrary shapes
– The number K of clusters is not needed

• Drawbacks
– One has to appropriately set ε and MinPts,

which are often difficult
– Runtime is slower than K-means,

the time complexity is O(n2d) (v.s. O(ndk) in K-means)
◦ We can speed-up using an index tree (e.g. k-d tree),

but it is not efficient for high-dimensional data
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Hierarchical Clustering

• Hierarchical clustering makes a hierarchy of clusters
– We can find clusters in a cluster

• Two approaches: divisive (top-down) and agglomerative
(bottom-up)
– Divisive: Start from the largest one cluster of the entire dataset and

recursively divide clusters
– Agglomerative: Start from the smallest clusters of single data points

and recursively join similar clusters
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Agglomerative Hierarchical Clustering

1. C ← {C i = {x i} ∣ x i ∈ D}
2. repeat

3. (i , j) ← argmini , j δ(C i , C j)
4. C i j ← C i ∪ C j

5. C ← (C \ {C i , C j}) ∪ {C i j}
6. until ∣C∣ = 1
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Distance between Clusters

• There are a number of choices how to measure the distance
between clusters

• Single link: δ(C i , C j) = min{d(x , y) ∣ x ∈ C i , y ∈ C j}
• Complete link: δ(C i , C j) = max{d(x , y) ∣ x ∈ C i , y ∈ C j}
• Group average: δ(C i , C j) = ∑x∈C i

∑y∈C j
d(x , y)/∣C i ∣∣C j∣

26/31



Dendrogram
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Dendrogram (agglomerative, complete)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

12 4 53 6 7 8 910

9 10
3

1 2
8

6 7

4 5

27/31



Evaluation of Clusters

• How to evaluate the goodness of clusters?

• Internal and external criteria
– Internal: Evaluate clusters without ground truth labels
– External: Evaluate clusters using ground truth labels
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Internal Criteria

• Just use SSE(C) in K-means or log-likelihood in EM

• Silhouette index: for x i ∈ C j ,

s(i) = 1
N

N

∑
i=1

b(i) − a(i)
max{a(i), b(i)} ,

a(i) = 1∣C j∣ − 1
∑

y∈C j , y/=x ∥y − x i∥2 , b(i) = min
k∈{1, . . . ,K},k/= j 1∣Ck ∣ ∑

y∈Ck

∥y − x i∥2
– −1 ≤ s(i) ≤ 1, higher is better
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External Criteria

• Accuracy is not appropriate!

• Variation of Information: For two partitions C = {C1 , . . . , CK} and
T = {T1 , . . . , TM} of D with ∣D∣ = N,

VI(C , T ) = −∑
i , j

r i j (log r i j∣C i ∣/N + log
r i j∣T j∣/N )

r i j =
∣C i ∩ T j∣

N
– 0 ≤ VI(C , T ) ≤ min{log N, 2 log(max K ,M)}, 0 being the best

• Adjusted Rand index is also often used 30/31



Summary

• Popular clustering methods are introduced
– K-means
– EM algorithm
– DBSCAN
– Hierarchical clustering

• Clustering results can be evaluated internally or externally
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