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Today’s Outline

« Clustering methods will be introduced
- K-means, EM algorithm, DBSCAN, hierarchical clustering

- Evaluation of clustering results
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Clustering

- Goal: Partition objects into several groups, where
those in the same group are similar with each other

— Atypical problem in
- Given adatasetD = {x,, x,,...,X,}, x;€R"

. : Find a partition C = {C,, C,, ..., Cx} of D s.t.

U C,-=DandC,-an=®
i€{1,2,...,.K}
- Each C;c Discalled a
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K-means

o is one of the most heavily used algorithm
- The scoring function:
K K n - .
SSEC)=) ) llx—mll=) > > (' —u)
k=1 x€C; k=1 x€C; j=1

- M, is the mean vector of a cluster C,
— Dissimilarity is measured by the squared Euclidean distance

- K-means tries to find the optimal clustering C™ s.t.
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Pseudocode of K-means

Input: Dataset D, Number of clusters K

« Output: Clustering C

0 0NV A WN =

Randomly initialize K centroids: u,, u,, ..., My
repeat
C, < oforallke{1,2,...,K}
foreach x e Ddo // cluster assignment
k™ < argminyg,, .k 11— Bl
Cpr < G U {x}
foreach k € {1,2,...,K} do // centroid update
M < O/1CK) Y pee, X

until cluster assignment does not change
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K-means on 1-Dimensional Data

Initial dataset
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K-means on 1-Dimensional Data

3rd iteration
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Notes on K-means

- K-means is a classic algorithm (proposed in 1967!),
while is still the state-of-the-art

— ltis fast; its time complexity is O(npK)
— Easy to use; there is only one parameter K

- Drawbacks

— Its result may be a local optimum, not global
— Its result depends on initialization
— It cannot detect
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K-means++

- K-means++ is an algorithm for selecting initial clustering
— This can alleviate the problem of finding worse clustering than optimal

1. Randomly select a data point x € D and u, « x
2. foreach k ={2,3,...,K} do

3. foreach x € Ddo D(x ) « min,e{1 2 k) ||x ul?

4.  foreach x € D do p(x) X)/ > .p D(s

5.  Select u, from D using the probablllty dlstribution p(x) foreach x € D
6. Perform K-means using u,, U, ..., U as the initial cluster centers
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EM Clustering

- In K-means, each point either belongs to a cluster or not
%

- How about obtaining the probability of cluster membership?

-

- The with a mixture of
Gaussian distributions is the representative method

— Itis sometimes called
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The General EM Algorithm (1/2)

- Input: A joint distribution p(X, Y; 8) over observed variables X
and hidden (latent) variables Y, with parameters 6
Goal: Maximize the likelihood of p(X; 6)

- This is difficult as the marginal distribution

log p(X; 6) = log (Z p(X,Y; 9))

should be optimized
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The General EM Algorithm (2/2)

- Input: A joint distribution p(X, Y; 8) over observed variables X
and hidden (latent) variables Y, with parameters 6
Goal: Maximize the likelihood of p(X;8) (may be local optimum)

1. Set an initial parameter 8" with t = 0
2. Expectation step (E-step): Evaluate p(Y | X; G(t))
3. Maximization step (M-step): Evaluate 8" such that

g\ = argmaxe(t+1>Q(9(t+1), G(t))
- (6", 8 =¥, p(v | X;6")log p(x, ¥; 6"

4. 6\ e“), t « t +1and repeat until convergence 11/31



Multivariate Normal Distribution

- Probability density function of 1D normal distribution

f(x; u,0%) = 1 exp —(X_él)z
2710 20

— x € R: mean, ° € R: variance

- Probability density function of multivariate normal distribution
Te—
exo| - X H) 2 (x - p)
(2n)n/2lz|1/2 2
— p € R": the cluster mean vector
- ¥ € R™": the covariance matrix 12/31

fix;u, %) =



Gaussian Mixture Model

« The Gaussian mixture model over K clusters:
K
f(x) =) x| me Zi)P(C)

- P(Cy) is the satisfying ZL P(C;)=1,
corresponding to the latent variable

- We denote the set of all parameters by 0 such that
6 = {u, Z,, P(C.), py. 25, P(Cy), - . . B, i, P(Ci)}

- Given a dataset D, the objective is to maximize the log-likelihood:

N
maxLp(0) =max ) = logf(x;)
6 0 Z=1 13/31



EM Clustering

- Given the current 0, the

wir = P(Cx | x;) = P(CI;D?:? Xi) _ f(Xi}M;(,XZ-/;)P(Ck)

for each data point x; and each cluster C,

- The
N
B D iz WikX

2:‘11 Wik

Zf'\; Wik

N

N 2
’ zk — ZI_‘] Ik|| I Hk” ’ P(Ck) —

Zg\; Wik

My
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Clusters that K-means cannot find
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Clusters that K-means cannot find

200 ~

200 300 400 500 600 _ 700
15/31

100

200 300 400 500 600 700

100



DBSCAN

- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
is a density-based clustering algorithm

. : A ball of radius € around a point x € R”,
Ne(x)=B(x,e)={yeD|d(x,y) <€}
- xisa if IN.(x)| = MinPts
- Xis fromyif x € N.(y)
« XIS from y if there is a chain of points x,, x,, ..., x|

s.t. x, =y, x; = x,and x;,, is directly density reachable from x;

— x and y are in the same cluster if y is density reachable from x
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Cluster Construction in DBSCAN

MinPts =3
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0 O 0
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Cluster Construction in DBSCAN
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Cluster Construction in DBSCAN
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Cluster Construction in DBSCAN
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Cluster Construction in DBSCAN
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Pseudocode of DBSCAN (1/2)

1

2
3
4
5.
6
7/
8

. Deore <« @ k < 0

. foreach x e Ddo //find core points

if [IN¢(x)| = MinPts then D ye < Deore U {Xx}

. foreach x € D, do

k « k + 1; DensityConnected(x, k)

. C«{C,....,C },whereC; « {xeD|id(x) =i}
. Dnoise < {x € D | id(x) is not assigned }
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Pseudocode of DBSCAN (2/2)

DensityConnected(x, k)

1. foreachy € N.(x) do
2. id(y) « k
3. ify € Deore then DensityConnected(y, k)
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DBSCAN with € = 14 and MinPts = 10
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DBSCAN with € = 12 and MinPts = 10
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DBSCAN with € = 16 and MinPts = 10
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Notes on DBSCAN

- DBSCAN can find clusters of
— The number K of clusters is not needed

- Drawbacks

— One has to appropriately set € and MinPts,
which are often difficult
— Runtime is slower than K-means,
the time complexity is O(n’d)  (v.s. O(ndk) in K-means)

o We can speed-up using an (e.g. k-d tree),
but it is not efficient for high-dimensional data
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Hierarchical Clustering

o makes a hierarchy of clusters

— We can find clusters in a cluster

- Two approaches: (top-down) and
(bottom-up)
— Divisive: Start from the largest one cluster of the entire dataset and
recursively divide clusters
— Agglomerative: Start from the smallest clusters of single data points
and recursively join similar clusters
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Agglomerative Hierarchical Clustering

1. C < {C; ={x;} | x; € D}

2. repeat

3. (i, j) « argmin; ; 6(C;, C;)
4. Cjj< Gu(

5. C«(C\{GC,C})u{Cy}
6. until |C| =1
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Distance between Clusters

- There are a number of choices how to measure the distance
between clusters

- Single link: 6(C;, C;) = min{d(x,y) | x € C;,y € C;}
- Complete link: 6(C;, C;) = max{d(x,y) | x € C;,y € C;}

- Group average: 6(C;, Cj) = ) .. Zyec x,y)/|1C|C;]
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Dendrogram
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Dendrogram (agglomerative, complete)
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Evaluation of Clusters

- How to evaluate the goodness of clusters?

- Internal and external criteria

— Internal: Evaluate clusters without ground truth labels
— External: Evaluate clusters using ground truth labels
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Internal Criteria

- Just use SSE(C) in K-means or log-likelihood in EM

- Silhouette index: for x; € C;,

_ —a(i)
sli) = NZ max{a(i), b(i)}

ali)=—— 5 lly-xiP, bi)=  min Y lly - xilP

|Cj| —1 yeC;, y£x ke{1,....K}, k#j |Ck| yec,

- =1 < 5(i) < 1, higher is better
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External Criteria

- Accuracy is not appropriate!

e : For two partitions C = {C,, ..., Cx} and
T =AT,,..., Ty} of Dwith |D| =N,
rl rI
VIC, T) == r;i|log —— + log —
Z, AT ISR TATTY
|C;n T
I’,‘j = N

- 0<VI(C,T) <min{log N, 2log(max K, M)}, 0 being the best

- Adjusted Rand index is also often used 30/31



Summary

- Popular clustering methods are introduced

- K-means
— EM algorithm

— DBSCAN
— Hierarchical clustering

- Clustering results can be evaluated internally or externally
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