

Outlier Detection

Data Mining 08 (データマイニング)

Mahito Sugiyama (杉山麿人)

Today's Outline

- Today's topic is outlier detection
 - studied in statistics, machine learning & data mining (unsupervised learning)
- Problem: How can we find outliers efficiently (from massive data)?

What is an Outlier (Anomaly)?

- An outlier is "an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism" (by Hawkins, 1980)
 - There is no fixed mathematical definition
- Outliers appear everywhere:
 - Intrusions in network traffic, credit card fraud,
 defective products in industry, medical diagnosis from X-ray images
- Outliers should be detected and removed
- Outliers can cause fake results in subsequent analysis

Distance-Based Outlier Detection

- The modern distance-based approach
 - A data point is an outlier, if its locality is sparsely populated
 - One of the most popular approaches in outlier detection
 - Distribution-free
 - Easily applicable for various types of data
- See the following for other traditional model-based approaches, e.g., statistical tests or changes of variances
 - Aggarwal, C. C., Outlier Analysis, Springer (2013)
 - Kriegel, H.-P., Kröger, P., Zimak, A., Outlier Detection Techniques, Tutorial at SIGKDD2010 [Link]
 - 井手剛, 入門機械学習による異常検知, コロナ社, (2015)

- Knorr and Ng were the first to formalize a distance-based outlier detection scheme
 - "Algorithms for mining distance-based outliers in large datasets",
 VLDB 1998

- Knorr and Ng were the first to formalize a distance-based outlier detection scheme
- Given a dataset X, an object $x \in X$ is a $DB(\alpha, \delta)$ -outlier if $|\{x' \in X \mid d(x, x') > \delta\}| \ge \alpha n$
- n = |X| (number of objects)
- $\alpha, \delta \in \mathbb{R}$ (o $\leq \alpha \leq$ 1) are parameters

- Knorr and Ng were the first to formalize a distance-based outlier detection scheme
- Given a dataset X, an object $x \in X$ is a $DB(\alpha, \delta)$ -outlier if $|\{x' \in X \mid d(x, x') > \delta\}| \ge \alpha n$
- n = |X| (number of objects)
- $\alpha, \delta \in \mathbb{R}$ (o $\leq \alpha \leq$ 1) are parameters

- Knorr and Ng were the first to formalize a distance-based outlier detection scheme
- Given a dataset X, an object $x \in X$ is a $DB(\alpha, \delta)$ -outlier if $|\{x' \in X \mid d(x, x') > \delta\}| \ge \alpha n$
- n = |X| (number of objects)
- $\alpha, \delta \in \mathbb{R}$ (o $\leq \alpha \leq$ 1) are parameters

From Classification to Ranking

- Two drawbacks of DB(α , δ)-outliers
 - (i) Setting the distance threshold δ is difficult in practice
 - Setting α is not so difficult since it is always close to 1
 - (ii) The lack of a ranking of outliers
- Ramaswamy *et al.* proposed to measure the outlierness by the *k*th-nearest neighbor (*k*th-NN) distance
 - Ramaswamy, S., Rastogi, R., Shim, K., "Efficient algorithms for mining outliers from large data sets", SIGMOD 2000

From Classification to Ranking

- Two drawbacks of DB(α , δ)-outliers
 - (i) Setting the distance threshold δ is difficult in practice
 - \circ Setting α is not so difficult since it is always close to 1
 - (ii) The lack of a ranking of outliers
- Ramaswamy *et al.* proposed to measure the outlierness by the *k*th-nearest neighbor (*k*th-NN) distance
 - Ramaswamy, S., Rastogi, R., Shim, K., "Efficient algorithms for mining outliers from large data sets", SIGMOD 2000
- From this study, the task of DB outlier detection
 becomes a ranking problem (without binary classification)

- The kth-NN score $q_{kthNN}(x) := d^k(x; X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X

• The kth-NN score $q_{kthNN}(x) := d^k(x; X)$

id score

• The kth-NN score $q_{kthNN}(x) := d^k(x; X)$

id score

0.109

9/40

• The kth-NN score $q_{kthNN}(x) := d^k(x; X)$

id score

1 0.1095 0.103

id	score
10	0.454

1	0.109
5	0.103

score
0.454
0.193
0.128
0.112
0.112
0.110
0.109
0.103
0.067
0.067

id	score
10	0.454
2	0.193
8	0.128
6	0.112
9	0.112
3	0.110
1	0.109
5	0.103
4	0.067
7	0.067

id	score
2	0.193
8	0.128
6	0.112
9	0.112
3	0.110
1	0.109
5	0.103
4	0.067
7	0.067
10	0.028
11	0.028

id	score
2	0.193
8	0.128
6	0.112
9	0.112
3	0.110
1	0.109
5	0.103
4	0.067
7	0.067
10	0.028
11	0.028

id	score
10	0.454
11	0.436
9	0.238
2	0.194
6	0.161
8	0.150
1	0.130
3	0.128
7	0.122
5	0.110
4	0.103

Connection with DB(α , δ)-Outliers

- The kth-NN score $q_{kthNN}(x) := d^k(x; X)$
 - $d^{k}(x; X)$ is the distance between x and its kth-NN in X
- Let $\alpha = (n k)/n$
- For any threshold δ , the set of DB(α , δ)-outliers = { $x \in X \mid q_{k\text{thNN}}(x) \ge \delta$ }

Two Drawbacks of the kth-NN Approach

1. Scalability; $O(n^2)$

- Solution: Partial computation of the pairwise distances to compute scores only for the top-t outliers
 - ORCA [Bay & Schwabacher, KDD 2003], iORCA [Bhaduri et al., KDD 2011]

2. Detection ability

- Solution: Introduce other definitions of the outlierness
 - Density-based (LOF)[Breunig et al. KDD 2000]
 - Angle-based (ABOD)
 [Kriegel et al. KDD 2008]

Partial Computation for Efficiency

- The key technique in retrieving top-t outliers:
 Approximate Nearest Neighbor Search (ANNS) principle
 - During computing $q_{kthNN}(x)$ within a for loop:

```
q_{k 	ext{thNN}}(x) = \infty (k = 1 	ext{ for simplicity})

for each x' \in X \setminus \{x\}

if d(x, x') < q_{k 	ext{thNN}}(x) then q_{k 	ext{thNN}}(x) = d(x, x')

the current value q_{k 	ext{thNN}}(x) is monotonically decreasing
```

- In the for loop, if $q_{kthNN}(x)$ becomes smaller than the mth largest score so far, x never becomes an outlier
 - The for loop can be terminated earlier

Further Pruning with Indexing

- iORCA employed an indexing technique
 - Bhaduri, K., Matthews, B.L., Giannella, C.R., "Algorithms for speeding up distance-based outlier detection", SIGKDD 2011
- Select a point $r \in X$ randomly (reference point)
- Re-order the dataset X with increasing distance from r
- If $d(x, r) + q_{kthNN}(r) < c$, x never be an outlier
 - c is the cutoff, the m-th largest score so far
- Drawback: the efficiency strongly depends on m

Two Drawbacks of the kth-NN Approach

1. Scalability; $O(n^2)$

- Solution: Partial computation of the pairwise distances to compute scores only for the top-t outliers
 - ORCA [Bay & Schwabacher, KDD 2003], iORCA [Bhaduri et al., KDD 2011]

2. Detection ability

- Solution: Introduce other definitions of the outlierness
 - Density-based (LOF)[Breunig et al. KDD 2000]
 - Angle-based (ABOD)
 [Kriegel et al. KDD 2008]

LOF (Local Outlier Factor) (1/2)

- $N^{k}(x)$: the set of kNNs of x
- Reachability distance $Rd(x; x') = max \{d^k(x', X), d(x, x')\}$

LOF (Local Outlier Factor) (2/2)

Local reachability density is

$$\Delta(x) := \left(\frac{1}{|N^k(x)|} \sum_{x' \in N^k(x)} \operatorname{Rd}(x; x')\right)^{-1}$$

• The LOF of x is defined as

$$LOF(x) := \frac{\left(1/|N^{k}(x)|\right) \sum_{y \in N^{k}(x)} \Delta(y)}{\Delta(x)}$$

• The ratio of the local reachability density of *x* and the average of the local reachability densities of its *k*NNs

LOF is Popular

- LOF is one of the most popular outlier detection methods
 - Easy to use (only one parameter k)
 - Higher detection ability than kth-NN
- The main drawback: scalability
 - $-O(n^2)$ is needed for neighbor search
 - Same as kth-NN

 If x is an outlier, the variance of angles between pairs of the remaining objects becomes small

• If x is an outlier, the variance of angles between pairs of the remaining objects becomes small

• If x is an outlier, the variance of angles between pairs of the remaining objects becomes small

• If x is an outlier, the variance of angles between pairs of the remaining objects becomes small

Definition of ABOD

- If x is an outlier, the variance of angles between pairs of the remaining objects becomes small
- The score ABOF(x) := $Var_{y,z \in X} s(y x, z x)$
 - s(x, y) is the similarity between vectors x and y, e.g. the cosine similarity
 - s(z x, y x) correlates with the angle of y and z w.r.t. the coordinate origin x
- Pros: Parameter-free
- Cons: High computational cost $O(n^3)$

Speeding Up ABOD

- Pham and Pagh proposed a fast approximation algorithm FastVOA
 - Pham, N., Pagh, R., "A near-linear time approximation algorithm for angle-based outlier detection in high-dimensional data", SIGKDD 2012
 - It estimates the first and the second moment of the variance $Var_{y,z\in X}s(y-x,z-x)$ independently using random projections and AMS sketches
- Pros: near-linear complexity: $O(tn(m + \log n + c_1c_2))$
 - t: the number of hyperplanes for random projections
 - $-c_1, c_2$: the number of repetitions for AMS sketches
- Cons: Many parameters

Other Interesting Approaches

- iForest (isolation forest)
 - Liu, F.T. and Ting, K.M. and Zhou, Z.H., "Isolation forest", ICDM 2008
 - A random forest-like method with recursive partitioning of datasets
 - An outlier tends to be easily partitioned

One-class SVM

- Schölkopf, B. et al., "Estimating the support of a high-dimensional distribution",
 Neural computation (2001)
- This classifies objects into inliers and outliers by introducing a hyperplane between them
- This can be used as a ranking method by considering the signed distance to the separating hyperplane

iForest (Isolation Forest)

- Given X, we construct an iTree:
 - (i) X is partitioned into X_L and X_R such that: $X_L = \{ x \in X \mid x_q < v \}, X_R = X \setminus X_L$, where v and q are randomly chosen
 - (ii) Recursively apply to each set until it becomes a singleton
 - Can be combined with sampling
- The outlierness score *i*Tree(x) is defined as $2^{-h(x)/c(\mu)}$
 - h(x) is the number of edges from the root to the leaf of x
 - h(x) is the average of h(x) on t iTrees
 - $-c(\mu) := 2H(\mu 1) 2(\mu 1)/n$ (H is the harmonic number)

One-class SVM

- A technique via hyperplanes by Schölkopf et al.
- The score of a vector **x** is $\rho (w \cdot \Phi(\mathbf{x}))$
 - Φ: a feature map
 - w and ρ are the solution of the following quadratic program:

$$\min_{w \in F, \xi \in \mathbb{R}^n, \rho \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{1}{vn} \sum_{i=1}^n \xi_i - \rho$$

subject to
$$(w \cdot \Phi(x_i)) \ge \rho - \xi_i, \ \xi_i \ge 0$$

- The term $w \cdot \Phi(\mathbf{x})$ can be replaced with $\sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x})$ using a kernel function k

Timeline

Outlier Detection via Sampling

- (Sub-)Sampling was largely ignored in outlier detection
 - Find outliers from samples seems hopeless
- Use samples as a reference set
 - Sugiyama, M., Borgwardt, K.M., "Rapid Distance-Based Outlier Detection via Sampling", NIPS 2013
 - Sample size is surprisingly small, which is sometimes 0.0001% of the total number of data points
 - Accuracy is competitive with state-of-the-art methods
- Ensemble methods are recently emerging
 - Aggarwal, C.C., Outlier Ensembles: An Introduction, Springer (2017)

id	score
10	0.454

1	0.130
5	0.122

id	score
10	0.454
11	0.436
6	0.369
8	0.217
2	0.193
7	0.193
3	0.161
1	0.130
5	0.122
9	0.112
4	0.067

Definition

- Given a dataset X (n data points, m dimensions)
- Randomly and independently sample a subset $S(X) \subset X$
- Define the score $q_{Sp}(x)$ for each object $x \in X$ as

$$q_{\mathrm{Sp}}(x) \coloneqq \min_{x' \in S(X)} d(x, x')$$

- Input parameter: the number of samples s = |S(X)|
- The time complexity is $\Theta(nms)$ and the space complexity is $\Theta(ms)$

Intuition

- Outliers should be significantly different from almost all inliers
 - → A sample set includes only inliers with high probability
 - → Outliers get high scores
- For each inlier, at least one similar data point is included in the sample set with high probability
- This scheme is expected to work with small sample sizes
 - If we pick up too many samples,
 some rare points, similar to an outlier,
 slip into the sample set

Notations

- $X(\alpha; \delta)$: the set of Knorr and Ng's DB(α, δ)-outliers
- $x \in X(\alpha; \delta)$ if $|\{x' \in X \mid d(x, x') > \delta\}| \ge \alpha n$
 - $-\overline{X}(\alpha;\delta) = X \setminus X(\alpha;\delta)$: the set of inliers
 - α is expected to close to 1, meaning that an outlier is distant from almost all points
- Define β (o $\leq \beta \leq \alpha$) as the minimum value s.t.

$$\forall x \in \overline{X}(\alpha; \delta), \left| \{ x' \in X \mid d(x, x') > \delta \} \right| \leq \beta n$$

Theoretical Results

1. For $x \in X(\alpha; \delta)$ and $x' \in \overline{X}(\alpha; \delta)$,

$$Pr(q_{Sp}(x) > q_{Sp}(x')) \ge \alpha^{s}(1 - \beta^{s})$$
 (s is the number of samples)

- This lower bound tends to be high in a typical setting
 (α is large, β is moderate)
- 2. This bound is maximized at

$$s = \log_{\beta} \frac{\log \alpha}{\log \alpha + \log \beta}$$

This value tends to be small

Evaluation criteria

- Precision v.s. Recall (Sensitivity)
 - Recall = TP / (TP + FN)
 - Precision = TP / (TP + FP)
- Effectiveness is usually measured by AUPRC (area under the precision-recall curve)
 - Equivalent to the average precision over all possible cut-offs on the ranking of outlierness
- cf. ROC curve: False Positive Rate (FPR) v.s. Sensitivity
 - FPR = FP / (FP + TN) = 1 Specificity
 - Sensitivity = TP / (TP + FN)

Relationship

	Condition Positive	Condition Negative	
Test Outcome Positive	True Positive	False Positive (Type I Error)	Precision TP / (TP + FP)
Test Outcome Negative	False Negative (Type II Error)	True Negative	
	Sensitivity (Recall)	Specificity TN / (FP + TN) = 1 – FPR	
TP / (TP + FN)	False Positive Rate (FPR) FP / (FP + TN)	32/40	

Datasets for Experiments (* are synthetic data)

	# of objects	# of outliers	# of dims
Ionosphere	351	126	34
Arrhythmia	452	207	274
Wdbc	569	212	30
Mfeat	600	200	649
Isolet	960	240	617
Pima	768	268	8
Gaussian*	1000	30	1000
Optdigits	1688	554	64
Spambase	4601	1813	57
Statlog	6435	626	36
Skin	245057	50859	3
Pamap2	373161	125953	51
Covtype	286048	2747	10
Kdd1999	4898431	703067	6
Record	5734488	20887	7
Gaussian*	10000000	30	20

Runtime (seconds)

AUPRC (* shows the best score)

Average of AUPRC over all datasets

How about High-dimensional Data?

- So-called "the curse of dimensionality"
- There is an interesting paper that studies outlier detection in high-dimensional data
 - Zimek, A., Schubert, E., Kriegel, H.-P., "A survey on unsupervised outlier detection in high-dimensional numerical data", Statistical Analysis and Data Mining (2012)

Fact about High-Dimensional Data

- High-dimensionality is not always the problem
 - If all attributes are relevant, detecting outliers becomes easier and easier as attributes (dimensions) increases
 - Of course, it is not the case if irrelevant attributes exist

When Data Is Supervised

- First choice: Optimize parameters by cross validation
 - Sample size in Sugiyama-Borgwardt method
 - Determine the threshold for outliers from rankings
- Classification methods can be used, but it is generally difficult as positive and negative data are unbalanced

Summary

- kth-NN method is the standard
- If there are different density regions, LOF is recommended
- The most advanced (yet simple) method is the sampling-based method
 - sampling is a powerful tool in outlier detection