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Today’s Outline

• Today’s topic is classification
– The main task of supervised learning

• Predict the label of a data point
– If labels are continuous (numeric), the task is usually called regression

• Cover basic classification methods
– Naïve Bayes, logistic regression, kNN, decision tree
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Bayes Approach to Classification

• Given a supervised dataset D = {(x 1 , y1), (x 2 , y2), . . . , (xN , yN)},
x i ∈ Rn (feature vector), y i ∈ C = {c1 , c2 , . . . , cK} (label)

• The Bayes approach:
Estimate the posterior probability P(c ∣ x) from data and
predict the class y of x as ŷ = argmaxc∈C P(c ∣ x)
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Bayes Classification

• Use the Bayes theorem:

P(c ∣ x) = P(x ∣ c) ⋅ P(c)
P(x)

– P(c ∣ x): posterior, P(x ∣ c): likelihood, P(c): prior
– P(x) = ∑c∈C P(x ∣ c) ⋅ P(c)

• Since the denominator P(x) is independent of classes c
(just a normalizing constant),
ŷ = argmax

c∈C
P(c ∣ x) = argmax

c∈C
P(x ∣ c)P(c)
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Prior Probability Estimation

• Goal: Estimate the prior P(c) from a dataset D

• For a given dataset D, for each class c ∈ C ,
Dc = {x ∣ (x , y) ∈ D and y = c}

• We can directly estimate the prior P(c) as the ratio:
P̂(c) = ∣Dc ∣∣D∣
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Naïve Bayes Model

• Goal: Estimate the likelihood P(x ∣ c) from a dataset D

• Assume that each feature is independent (the model is “naïve”):
P(x ∣ c) = ∏n

j=1 P(x j ∣ c), x = (x 1 , x2 , . . . , xn)
• For each j ∈ {1, 2, . . . , n}, if we assume data is normally distributed,

P(x j ∣ c) ∝ f (x j ; µ j
c , σ

j 2
c ) = 1√

2πσ j
c

exp (− (x j − µ j
c)2

2σ j 2
c

)
P(x ∣ c) = n

∏
j=1

P(x j ∣ c) ∝ n

∏
j=1

f (x j ; µ j
c , σ

j 2
c )
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Algorithm 1: Naïve Bayes Classifier
1 learn(D)
2 foreach c ∈ C do
3 Dc ← {x ∣ (x , c) ∈ D}
4 P̂(c) ← ∣Dc ∣ / ∣D∣
5 foreach j ∈ {1, 2, . . . , n} do
6 µ̂ j

c ← (1/∣Dc ∣)∑x∈Dc
x j

7 σ̂ j 2
c ← (1/∣Dc ∣)∑x∈Dc

(x j − µ̂ j
c)2

8 classify(x)
9 ŷ ← argmaxc∈C P̂(c)∏n

j=1 f (x j ; µ̂ j
c , σ̂

j 2
c )
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If Features Are Categorical

• Assume that the domain of j th feature is finite: Σ j = {s1 , s2 , . . . , sm j}
– The feature j is called categorical (discrete)

• Likelihood for each categorical value s i ∈ Σ j is estimated as

P̂(s i ∣ c) = ∣{x ∈ Dc ∣ x j = s i}∣∣Dc ∣
• Label y of a test point x is estimated as

ŷ = argmax
c∈C

P̂(c) n

∏
j=1

P̂(x j ∣ c)
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kNN approach

• The kNN (k Nearest Neighbor) classifier predicts the label of x
to the majority class among its k nearest neighbors

• Sort a given dataset D as (x (1) , y(1)), (x (2) , y(2)), . . . , (x (N) , y(N)) in
increasing order according to the distance from a test point x

– Euclidean distance ∥x i − x∥2 =
√
∑n

j=1(x j
i − x j)2 is typically used

• Take the top-k points (x (1) , y(1)), (x (2) , y(2)), . . . , (x (k) , y(k)) and
ŷ = argmax

c∈C
∣{(x (i) , y(i)) ∣ i ≤ k and y(i) = c}∣

– ∣{(x (i) , y(i)) ∣ i ≤ k and y(i) = c}∣/k can be viewed as posterior P(c ∣ x)
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Logistic Regression

• Logistic regression is a binary classification model

• An auxiliary target variable z is modeled as

z =
n

∑
j=1

w jx j + w0 = ⟨w , x⟩ + w0

• The logistic function f is a mapping from R to the interval [0, 1]:
f (z) = exp(z)

exp(z) + 1
= 1
1 + exp(−z)
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Logistic Function
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Logistic Regression

• The logistic function becomes

f (x) = 1
1 + exp (−(⟨w , x⟩ + w0))

• The inverse g = f−1 is called the logit or log-odds function:

g(f (x)) = log ( f (x)
1 − f (x) ) = ⟨w , x⟩ + w0

• The goal of logistic regression is to estimatew and w0 from a
dataset D
– f (x) shows probability of belonging to the class 1, thus
its label y = 1 if f (x) ≥ 0.5 11/22



Maximum Likelihood Estimation

• The log-likelihood of the parameter (w ,w0) is
L(w ,w0) = N

∑
i=1

y i log f (x i ) + (1 − y i ) log(1 − f (x i )), x i ∈ Rn , y i ∈ {0, 1}
– The objective of logistic regression is maximization of L(w ,w0)

• The gradient w.r.t. w j is

∂L(w ,wp)
∂w j

=
N

∑
i=1
(y i − f (x i ))x j

i

• Since log-likelihood is convex, it is maximized by gradient ascent
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Logistic Regression by Gradient Ascent

Algorithm 2: Logistic Regression
1 Initializew and w0 with some values;
2 t ← 0;
3 repeat
4 foreach j ∈ {1, 2, . . . , n} do
5 w j ,(t+1)

← w j ,(t) + ε ∑N
i=1(y i − f (x i )) x j

i

6 t ← t + 1

7 untilw(t) = w(t+1);
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Decision Tree

• Decision tree obtains a tree-structured classification rules by
recursively partitioning data points

• In a decision tree, each node represents a binary classification rule
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Algorithm 3: Decision Tree
1 DecisionTree(D, η, π)
2 if ∣D∣ ≤ η ormaxc∈C ∣Dc ∣ / ∣D∣ ≥ π then
3 create a leaf node and label it with argmaxc∈C ∣Dc ∣ / ∣D∣
4 return

5 (split rule, score∗) ← (∅, 0)
6 foreach j ∈ {1, 2, . . . , n} do
7 (v , score) ← EvaluateFeature(D, j)
8 if score > score∗ then (split rule, score∗) ← (X j ≤ v , score) ;
9 DY ← {x ∈ D ∣ x satisfies the split rule }; DN ← D \ DY

10 Create a node with the split rule
11 DecisionTree(DY , η, π); DecisionTree(DN , η, π) 15/22



Split Rule

• If the j th feature (variable) X j is numeric (continuous),
a split rule is in the form of “X j ≤ v”
– For a point x , it is satisfied if x j ≤ v

• If the j th feature (variable) X j is categorical (discrete),
a split rule is in the form of “X j ∈ V”
– For a point x , it is satisfied if x j ∈ V
– Replace X j ≤ v with X j ∈ V in the line 8 of Algorithm 3 if X j is categorical
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Split Rule Evaluation: Entropy

• Information gain: Gain(D, DY , DN) = H(D) − H(DY , DN)
– Entropy:

H(D) = −∑
c∈C

PD(c) log PD(c)
◦ PD(c) is the probability of the class c in D
◦ It is larger if PD(c) is equally distributed

– Split entropy:

H(DY , DN ) = ∣DY ∣∣D∣ H(DY ) + ∣DN ∣∣D∣ H(DN )
• The higher the information gain, the better the split rule
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Split Rule Evaluation: Gini Index

• Information gain: Gain(D, DY , DN) = G(D) − G(DY , DN)
– Gini index:

G(D) = 1 − ∑
c∈C

P(c ∣ D)2
◦ PD(c) is the probability of the class c in D
◦ It is larger if PD(c) is equally distributed

– Weighted Gini index:

G(DY , DN ) = ∣DY ∣∣D∣ G(DY ) + ∣DN ∣∣D∣ G(DN )
• The higher the information gain, the better the split rule
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Algorithm 4: Evaluate Numeric Feature
1 EvaluateFeatureNumeric(D, j)
2 sort D on feature j as x (1) , x (2) , . . . , x (N) s.t. x j(i) ≤ x j(i+1)
3 M ← {v1 , v2 , . . . , vN−1} s.t. v i = (x j(i) + x j(i)) / 2; // Set of midpoints
4 (v∗ , score∗) ← (∅, 0)
5 foreach v ∈ M do
6 DY ← {(x , y) ∈ D ∣ x j ≤ v}; DN ← D \ DY

7 foreach c ∈ C do
8 P̂(c ∣ DY ) ← ∣DY ,c ∣ / ∣DY ∣; P̂(c ∣ DN) ← ∣DN ,c ∣ / ∣DN ∣
9 score ← Gain(D, DY , DN)

10 if score > score∗ then (v∗ , score∗) ← (v , score) ;
11 return (v∗ , score∗) 19/22



Algorithm 5: Evaluate Categorical Feature
1 EvaluateFeatureCategorical(D, j)
2 (v∗ , score∗) ← (∅, 0)
3 foreach V ⊆ Σ j do
4 DY ← {(x , y) ∈ D ∣ x j ∈ V}; DN ← D \ DY

5 foreach c ∈ C do
6 P̂(c ∣ DY ) ← ∣DY ,c ∣ / ∣DY ∣; P̂(c ∣ DN) ← ∣DN ,c ∣ / ∣DN ∣
7 score ← Gain(D, DY , DN)
8 if score > score∗ then (V∗ , score∗) ← (V , score) ;
9 return (V∗ , score∗)
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Random Forest

• To avoid overfitting, ensemble of decision trees can be used

• Breiman (2001) introduced random forests, a collection of decision
trees
– This method is known to be effective in practice

• Subsample a dataset (N′ points and n′ features) t times

• Construct a decision tree for each subsampled dataset

• Classification is performed by taking a majority vote across the trees
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Summary

• Naïve Bayes classifier perform classification using the Bayes theorem
– Assumption: Features are independent

• kNN is a non-parametric classification method

• Logistic regression is easy to fit and interpret

• Decision tree can obtain interpretable classification rules
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