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Today’s Outline

- Today’s topic is (SVMs)
— A popular supervised classification method

- Perform binary classification by maximizing the margin

- Kernel trick for nonlinear classification
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Classification Problem Setting

. Given a dataset D = {(x, y1), (X2, ¥2) -, (XN, YN}
x; € R" (feature vector), y; € C = {-1, 1} (label)

- Usea ( ) in the form of
f(x) = (w,x)+wo, =3, w/x! + w,

- A classifier g(x) is given as
~ 1 iff(x)>0,
9(x) = { 1 iff(x) <0

- Goal: Find (w, w,) that correctly classifies the dataset
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Classification by Hyperplane

fx) ={(w,x)+wy,=0
~— A hypothesis, a hyperplane
in general, is uniquely specified
by a pair (w, wy)

(x;, 1)
T (x; 1) Data
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Example: Perceptron

Algorithm 1: Perceptron

perceptron(D)
Set small random values to w and w;
foreachi€ {1,2,...,N}do
a<« (w,x;)+w,
if y; - a < 0then
WeWw+yX;;
L Wo < Wo + i,

// initialization

// update the weight
// update the bias
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Correctness of Perceptron

- Itis guaranteed that a perceptron always converges
to a correct classifier

— A correct classifier is a function f s.t.
f(x)>0ify=1,
f(x)<0ify=-1

- Note: there are (infinitely) many functions
that correctly classify two classes

— A perceptron converges to one of them
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Support Vector Machines (SVMs)

- AdatasetDis byf < vyf(x;)>0,Vie{12,...,N}

- The is the distance from the classification hyperplane
to the closest data point

- Support vector machines (SVMs) tries to find a hyperplane that
the margin
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f(x) =(W, x) + wo =0
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Formulation of SVMs

- The distance from a point x; to a hyperplane f(x) = (w, x) + w, is
|f(x;)] _ [(w, x;) + w,|
[|wl] |wl]

- Since y;f(x;) > 0 should be satisfied, assume that there exists M > 0
such that y;f(x;) = Mforallj e {1,2,...,N}

- The margin maximization problem can be written as

M : :
max —— subjectto y;f(x;)=M,i€{1,2,...,N}

wwo M ||wl]

- M= minie{1,2 ..... N} |<W, Xi) + Wol
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Hard Margin SVMs

- We can eliminate M and obtain

1 . :
max —— subjectto y;f(x;) = 1,i € {1,2,..., N}
wws W]

- This is equivalent to
min||w||* subjecttoy;f(x;)=1,i€{1,2,...,N}
w,w,
— The standard formulation of

— There are data points x; satisfying y;f(x;) = 1, called

— The solution does not change even data points that are not support
vectors are removed
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Margin

' ) =(W,x) +Ww,=0
Margin
i Support vector
& O
O
, O
,/' O O
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Soft Margin

- Datasets are not often separable
- Extend SV classification to by relaxing (w, x) + w, > 1

« Change the constraint y;f(x;) = 1 using the ¢ to
yif(x;)=yi((w,x)+w,)=21-¢&;, i€ef12...,n}

« The formulation of (C-SVM) is
min %||w||2 +CY & styfx)21-6,620,i€{1,2...,N}
Wilkor i€{1,2,...,N}

— Cis called the
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Soft Margin

Cis large

Cis small
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Data Point Location

- yif(x;) > 1: x; is outside margin
— These points do not affect to the classification hyperplane

- y;f(x;) = 1: x; is on margin

- yif(x;) < 1: x; is inside margin
— These points do not exist in hard margin

- Points on margin and inside margin are support vectors
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Dual Problem (1/4)

- The formulation of C-SVM
min. —||w|| +C) & styf(x)z1-6,620,i€{1,2,...,N)

i€{1,2,...,N}

is called the

- This is usually solved via the

- Make the usinga =(a,,...,ay), u = (U, ..., Un):
L(W,WO, fralu) _”W” +CZ€I Zal YI _1 +61 Zulgl
i€[N] i€[N]

- [N]={1,2,...,N} 14/31



Dual Problem (2/4)

« Let us consider
D(a,p) = min L(w,w,, § a, u)

WIWOIE

and its maximization

max D(a,ud)= max min L(w,w,, § a,u)
a=0,U=0 azo,u=o w,w,,&

- The inside minimization is achieved when

oL
a—wzw—-Za,-y,-x,-— =—Xay,—0 —C a; — [J,'=O
i€[N] i€[N]
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Dual Problem (3/4)

- Putting the three conditions to the Lagrange function
to remove w, w,, and §, yielding

L=slwlP+CY &= alyflx)-1+&) =) wé

i€[N] i€[N] i€[N]
1
= 2wl =Y ayiiw, x;) WOZay,+Za,+ZC a; -
ie[N] i€[N]

Xa a;yiyi{Xi, X;) + Za,

I/e N]
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Dual Problem (4/4)

- It can be proved that maxgs, o Miny ¢ L(w, w,, €, a, p), that s,
the

max——Zaajy,yj(x,,x Za, s.t. Zay,—O 0<a;<C,i €[N]
i,je[N] i€[N] i€[N]

is equivalent to the

min, —||w|| +C) & styflx)21-6,620,i€[N]

i€{1,2,...,N}
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KKT (Karush-Kuhn-Tucker) condition

- The necessary conditions for a solution to be optimal:
oL

a—w=w—i€%]a,-y,-x,-=0 aWO=—IE%ay,—O B_E,_C ai—u;=0
—(yif(x;)=1+§) =<0, =& <0,

a; =20, u; =20,

ai(yif(x;)—1-¢&)=0, u;&; =0,

i €[N]
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Recovering Primal Variables

- Using these conditions, from the optimal a, we have

f(x) = Zai)/i<xirx> + Wo,
i€[N]
Wo=yi— ) ajyix;x;), Vie{ie[N]|0<a;<C}
JE[N]
— Since the second condition holds forall i € {i e [N] | 0 < a; < C}, one
can take the average to avoid numerical errors
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Data Point Location

- yif(x;) > 1 < a; = 0: x; is outside margin
— These points do not affect to the classification hyperplane

- yif(x;) =1 & 0<a; < C: x;isonmargin

- yif(x;) <1 & a; = C: x; is inside margin
— These points do not exist in hard margin

- Points on margin and inside margin are support vectors
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How to Solve?

 The (dual) problem:

1
max—EaTQa +17a st yTa =0,0<a=<C1
a
- Q € R is the matrix such that qi; = Yiyi{Xi, X;)

- Since analytical solution is not available, iterative approach for
continuous optimization with constraints is needed

« One of standard methods is the
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Active Set Method

- Divide the set [N] of indices into three sets:
O={i€e[N]]|a; =0}
M={ie[N]|0<a;<C}

I={ie[N]|a;=C}

— O and |/ are called

 The problem can be solved w.r.t. i € M, yielding

[QM yM} [aM] _ C[Qw L } H

T =~ T N
ym O JLV 1 Yi 0

— This can be directly solved if Q,, is positive definite 22/31



Algorithm 2: Active Set Method

activeSetMethod(D)

Initialize M, I, O
while thereexistsis.t. y,f(x;) < 1,ie€ Oory;f(x;)>1,i € ldo

Update M, I, O

repeat

a, < the solution of the above equation

new
d<a, —ay

ay < ay +nd; //the maximum n satisfying a,, € [0, C]"!

Moveie MfromMtolorOifa,=Cora; =0

untilay, = ayy ;
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Extension to Nonlinear Classification

- To achieve nonlinear classification, convert each data point x to
some point ¢(x), and f(x) becomes

f(x) = (w, o(x)) + w,

« The dual problem becomes

1 :
m‘?x—z 2 a;a;yiyi(e(x;), o(x;)) + 2 a; S.t Z a;yi=0,0=<a;<C,i€[N]
i,j€[N] i€[N] i€[N]
— Only the dot product (¢(x;), ¢(x;)) is used!
— We do not even need to know ¢(x;) and ¢(x )

L K(xi, x;) = (@(x;), o(x)) 24/31



C-SVM with Kernel Trick

- Using the kernel function K, we have

max——Zaajy,yjK(x,,x Za, s.t. Zay,—O O0<a;<C,i €[N]
i,je[N] i€[N] i€[N]

— The technique of using K is called
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Positive Definite Kernel

- Akernel K: QO xQ - Risa if

(i) K(x,y)=K(y, x)
(i) For x,, x,,...,xy, the N x N matrix

K(x, x,)  K(x,x,) ... Kxn x)
T e
K(xi, xn) KOG, xn) oo KX, xy)

N
i,j=1

is positive (semi-)definite, that s, )
foranyc,, c,,...,cy €R

- (K;;) € R™" is called the

C,'CjK(X,',Xj) >0
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Popular Positive Definite Kernels

 Linear Kernel
K(x,y)=(x,y)

- Gaussian (RBF) kernel

1
K(x,¥) = exp(-—Ix -y’

- Polynomial Kernel
Kx,y)=({x,y)+c)° ¢, deR
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Simple Kernels

« The all-ones kernel
K(x,y)=1

- The delta (Dirac) kernel

[ 1 ifx=y,
K(x,y) = { 0 otherwise
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Closure Properties of Kernels

For two kernels K, and K., K, + K, is a kernel

For two kernels K, and K,, the product K, - K, is a kernel

For a kernel K and a positive scalar A € R", AK is a kernel

For a kernel K on a set D, its zero-extension:

[ K(x,y) ifx,yeD,
Ko(x. ¥) _{ 0 otherwise

is a kernel
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Kernels on Structured Data

- Given objects X and Y, them into substructures Sand T
- The Kp by Haussler (1999) is given as
KR(XI Y) = Z Kbase(sr t)
ses, teT

— Kpase is @an arbitrary base kernel, often the delta kernel

- For example, X is a graph and S is the set of all subgraphs
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Summary

- SVM finds the “best” classification hyperplane
- The is maximized

- Although the original SVM can perform only linear classification,
it can be extended to nonlinear classification by using

- Gaussian kenrel + C-SVM can be the first choice

31/31



	Today's Outline
	Classification Problem Setting
	Classification by Hyperplane
	Example: Perceptron
	Correctness of Perceptron
	Support Vector Machines (SVMs)
	Margin
	Formulation of SVMs
	Hard Margin SVMs
	Margin
	Soft Margin
	Soft Margin
	Data Point Location
	Dual Problem (1/4)
	Dual Problem (2/4)
	Dual Problem (3/4)
	Dual Problem (4/4)
	KKT (Karush-Kuhn-Tucker) condition
	Recovering Primal Variables
	Data Point Location
	How to Solve?
	Active Set Method
	Extension to Nonlinear Classification
	C-SVM with Kernel Trick
	Positive Definite Kernel
	Popular Positive Definite Kernels
	Simple Kernels
	Closure Properties of Kernels
	Kernels on Structured Data
	Summary

