January 19， 2018

Feature Selection

Data Mining 11 （データマイニング）

Today's Outline

- Today's topic is feature selection
- Find relevant variables from datasets
- Feature selection detects variables, or features, that are associated with the target variable from the set of all variables in a given dataset
- The target variable can be binary (0 and 1 for cases and controls) in a case-control study or continuous

Variable Ranking (Filter Method)

1. Measure the degree of association between the target variable and each variable by some scoring method

- Pearson's correlation coefficient
- Mutual information

2. Rank variables using the score

- The above two-step procedure is called the filter method

Pearson's Correlation Coefficient

- (Pearson's) correlation coefficient ρ measures the linear association between two variables
- The larger the absolute value $|\rho|$ is, the stronger the association is
- $\rho>0$ means the positive correlation, $\rho<0$ the negative correlation
- ρ between two random variables X and Y is defined as

$$
\rho=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])]}{\sqrt{\mathbf{E}\left[(X-E[X])^{2}\right] \mathbf{E}\left[(Y-E[Y])^{2}\right]}}
$$

- $\sigma_{X Y}$ is the covariance, σ_{X} is the standard deviation
- $\mathbf{E}[X]$ is the expectation

Sample Correlation Coefficient

- Given a dataset (sample) $D=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$, the sample correlation coefficient r is computed as

$$
\begin{aligned}
r & =\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}} \\
\bar{x} & =\frac{1}{N} \sum_{i=1}^{N} x_{i}, \quad \bar{y}=\frac{1}{N} \sum_{i=1}^{N} y_{i}
\end{aligned}
$$

Properties of Correlation Coefficient

- $-1 \leq \rho \leq 1$ and $1,-1$ are the strongest correlation
- X and Y are independent $\Longrightarrow \rho(x)=0$
- X and Y are (statistically) independent if

$$
P(X \cup Y)=P(X) P(Y)
$$ and denoted by $X \Perp Y$

- However, $[\rho(x)=0 \Longrightarrow X$ and Y are independent] does not hold
- $\rho(x)$ can be 0 for nonlinear association

Mutual Information

- For a pair of discrete random variables X and Y, the mutual information is defined as

$$
I(X, Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) \log \left(\frac{p(x, y)}{p(x) p(y)}\right)
$$

- $p(x, y)$ is the joint probability, $p(x)$ and $p(y)$ are the marginal probability
- Properties:
- $I(X, Y) \geq 0$
$-I(X, Y)=H(X)+H(Y)-H(X, Y)=H(X)-H(Y \mid X)$
- $H(X)$ is the entropy: $-\sum_{x \in X} p(x) \log p(x)$
- $H(X, Y)$ is the joint entropy: $-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(x, y)$

Properties of Mutual Information

- Pros:
- The mutual information can measure both linear and nonlinear associations
- X and Y are independent $\Longleftrightarrow I(X, Y)=0$
- Cons:
- Additional discretization is needed to estimate the mutual information for continuous variables
- Not normalized in the original form, but can be normalized by

$$
I^{*}(X, Y)=\frac{I(X, Y)}{\sqrt{H(X) H(Y)}}
$$

Computing the p-value

- p-value shows the probability of getting the dataset with assuming that there is no association between variables
- Often used in science, e.g. biology
- Permutation test can be used to compute the p-value
(i) Compute the association score s of the given dataset
(ii) Repeat the following h times and get h scores $s_{1}, s_{2}, \ldots, s_{h}$:
a. Fix x and permute indices of y
b. Compute the score using the permuted indices
(iii) The p-value $=\left|\left\{i \in[h] \mid s_{i}>s\right\}\right| / h$

Manhattan Plot for Visualization

Properties of Filter Method

- Pros:
- Easy to use
- Easy to understand
- Cons:
- Redundant features might be selected as interactions between variables are not considered
- If a dataset contains exactly the same variables that have the strong association with the target variable, both variables are selected

Wrapper Method

- A wrapper method repeats to construct a classifier for each subset of variables
(i) Given a dataset with n variables $X^{1}, X^{2}, \ldots, X^{n}$ and a target variable Y
(ii) Repeat the following for every subset $I \subseteq[n]$
a. Construct a subset of the dataset using only variables in /
b. Apply classification and measure the goodness (e.g. MSE)
(i) Choose the best subset
- It is computationally too expensive if n is large

Embedded Method

- Variables are automatically selected during the process of learning a prediction model from a dataset
- The representative method: the Lasso
- It learns a linear prediction model, where a set of variables, which receive nonzero coefficients, is automatically selected in the learning process by regularizing the number of variables
- The joint additive effect of selected variables maximizes the prediction accuracy of the model

The Lasso

- The Lasso is the following optimization problem

$$
\begin{aligned}
& \min _{\boldsymbol{w}, \boldsymbol{w}_{0}} \frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\left\langle\boldsymbol{w}, \boldsymbol{x}_{i}\right\rangle-w_{0}\right)^{2} \quad \text { s.t. }\|\boldsymbol{w}\|_{1} \leq t \\
& -\|\boldsymbol{w}\|_{1}=\sum_{j=1}^{n}\left|w^{j}\right|\left(\ell_{1}-\text { norm }\right) \\
& - \text { Minimizing squared error loss with the constraint }
\end{aligned}
$$

- The solution typically has many of the w^{j} equal to zero
$-\left\{j \in[n] \mid w^{j} \neq 0\right\}$, called the active set, is considered to be the set of selected variables

The Lasso

- More convenient Lagrange form of the Lasso;

$$
\min _{\boldsymbol{w}, w_{o}} \frac{1}{2 N} \sum_{i=1}^{N}\left(y_{i}-\left\langle\boldsymbol{w}, \boldsymbol{x}_{i}\right\rangle-w_{o}\right)^{2}+\lambda\|\boldsymbol{w}\|_{1}
$$

- If we center the dataset beforehand, it can be written as

$$
\begin{aligned}
& \min _{\boldsymbol{w}} \frac{1}{2 N} \sum_{i=1}^{N}\left(y_{i}-\left\langle\boldsymbol{w}, \boldsymbol{x}_{i}\right\rangle\right)^{2}+\lambda\|\boldsymbol{w}\|_{1}, \\
& \min _{\boldsymbol{w}} \frac{1}{2 N}\|\boldsymbol{y}-X \boldsymbol{w}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{1},
\end{aligned}
$$

Lasso Constraint

Regularization Path ($N=1000, n=100$)

MSE ($N=1000, n=100$)

Number of nonzero variables

Fitting of the Lasso

- Solution of the Lasso problem satisfies the subgradient condition:

$$
\begin{aligned}
& -\frac{1}{n}\left\langle\boldsymbol{x}^{j}, \boldsymbol{y}-X \hat{\boldsymbol{w}}\right\rangle+\lambda s^{j}=0, \quad j=1,2, \ldots, n \\
& -\boldsymbol{x}^{j}=\left(x_{1}^{j}, x_{2}^{j}, \ldots, x_{N}^{j}\right) \in \mathbb{R}^{N} \\
& -s_{j}=\operatorname{sign}\left(\hat{w}^{j}\right) \text { if } \hat{w}^{j} \neq 0 \text { and } s_{j} \in[-1,1] \text { if } \hat{w}^{j}=0
\end{aligned}
$$

- Thus we have

$$
\begin{cases}-\frac{1}{n}\left|\left\langle\boldsymbol{x}^{j}, \boldsymbol{y}-X \hat{\boldsymbol{w}}\right\rangle\right|=\lambda, & \text { if } w^{j} \neq 0, \\ -\frac{1}{n}\left|\left\langle\boldsymbol{x}^{j}, \boldsymbol{y}-X \hat{\boldsymbol{w}}\right\rangle\right| \leq \lambda, & \text { if } w^{j}=0,\end{cases}
$$

- $\hat{\boldsymbol{w}}$ is a piecewise-linear function w.r.t. $\lambda \rightarrow L A R$ algorithm

Algorithm 1: Least Angle Regression

```
LAR(X,y)
2 Standardize X (mean zero, unit }\mp@subsup{\ell}{2}{}\mathrm{ norm)
    \mp@subsup{r}{0}{}}=\boldsymbol{y}-\overline{\boldsymbol{y}},\mp@subsup{\boldsymbol{w}}{0}{}\leftarrow(0,0,\ldots,0
```



```
    \lambda
        foreach }k\in{1,2,\ldots,K=m\operatorname{min}{N-1,n}} d
```


Algorithm 2: Least Angle Regression

$1 \operatorname{LAREach}\left(X, \boldsymbol{y}, A, \lambda_{k-1}, \boldsymbol{r}_{k-1}, \boldsymbol{w}_{k-1}\right)$

2	$\delta \leftarrow\left(1 / n \lambda_{k-1}\right)\left(X_{A}^{\top} X\right)^{-1} X_{A}^{\top} \boldsymbol{r}_{k-1}$
3	$\Delta \leftarrow(0,0, \ldots, 0) ; \Delta_{A} \leftarrow \delta$
4	$\boldsymbol{w}(\lambda) \leftarrow \boldsymbol{w}_{(k-1)}+\left(\lambda_{k-1}-\lambda\right) \Delta$ for $0<\lambda \leq \lambda_{k-1}$
5	$\boldsymbol{r}(\lambda) \leftarrow \boldsymbol{y}-X_{\boldsymbol{w}}(\lambda)=\boldsymbol{r}_{k-1}-\left(\lambda_{k-1}-\lambda\right) X_{A} \delta$

Decrease λ and find $\ell \notin A$ that first achieves $(1 / N)\left|\left\langle\boldsymbol{x}^{j}, \boldsymbol{r}(\lambda)\right\rangle\right|=\lambda$ $A \leftarrow A \cup\{\ell\} ; \boldsymbol{w}_{k} \leftarrow \beta\left(\lambda_{k}\right) ; \boldsymbol{r}_{k} \leftarrow \boldsymbol{y}-X \boldsymbol{w}_{(k)}$

Dimension Reduction

- Dimension reduction also reduces the number of variables
- Variables are not directly selected but transformed into principal variables
- t-SNE (t-distributed stochastic neighbor embedding) is recently becoming a popular method and often used to visualize a multi-dimensional dataset (van der Maaten and Hinton, 2008)
- This can be used for visualization

t-SNE

- Given a dataset $D=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$, define $p_{j \mid i}$ for each $i, j \in[N]$ as

$$
p_{j \mid i}=\frac{\exp \left(-\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}
$$

- σ_{i} is the variance of the Gaussian centered on \boldsymbol{x}_{i}
- $p_{i \mid i}=0$
- For the symmetricity, define $p_{i j}=\left(p_{j \mid i}+p_{i \mid j}\right) / 2$
- Goal: Find low-dimensional $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{N}$ of the original $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}$ with keeping the proxy between points

How to Set Variance

- Given the perplexity as a parameter, which is defined as
$\operatorname{Perp}\left(P_{i}\right)=2^{H\left(P_{i}\right)}$
for a distribution P_{i} and its entropy $H\left(P_{i}\right)$ such that
$H\left(P_{i}\right)=-\sum_{j} p_{j \mid i} \log p_{j \mid i}$
- For each $i \in[N]$, find σ_{i}^{2} that satisfies the given perplexity
- In practice, the perplexity from 5 to 50 is recommended

t-SNE Formulation

- For low-dimensional $\boldsymbol{y}_{i}, \boldsymbol{y}_{j}$ of $\boldsymbol{x}_{i}, \boldsymbol{x}_{j}$,

$$
q_{i j}=\frac{\exp \left(1+\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|^{2}\right)}{\sum_{k \neq 1} \exp \left(1+\left\|\boldsymbol{y}_{k}-\boldsymbol{y}_{l}\right\|^{2}\right)}
$$

- The cost C is the KL divergence: $C=D_{K L}(P, Q)=\sum_{i} \sum_{j} p_{i j} \log \frac{p_{i j}}{q_{i j}}$
- t-SNE finds low-dimensional $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{N}$ that minimizes the cost C
- The gradient descent can be used using the gradient

$$
\frac{\partial C}{\partial \boldsymbol{y}_{i}}=4 \sum_{j}\left(p_{i j}-q_{i j}\right)\left(\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right)
$$

Summary

- Feature selection can find relevant variables (features)
- Filter method, wrapper method, embedded method
- The Lasso is the representative embedded method
- t-SNE is the representative dimension reduction method

