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Today’s Outline

• Today’s topic is feature selection
– Find relevant variables from datasets

• Feature selection detects variables, or features, that are associated
with the target variable from the set of all variables in a given
dataset
– The target variable can be binary (0 and 1 for cases and controls)
in a case-control study or continuous

1/25



Variable Ranking (Filter Method)

1. Measure the degree of association between the target variable and
each variable by some scoring method
– Pearson’s correlation coefficient
– Mutual information

2. Rank variables using the score

• The above two-step procedure is called the filter method
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Pearson’s Correlation Coefficient

• (Pearson’s) correlation coefficient ρmeasures the linear association
between two variables
– The larger the absolute value ∣ρ∣ is, the stronger the association is
– ρ > 0 means the positive correlation, ρ < 0 the negative correlation

• ρ between two random variables X and Y is defined as

ρ =
σXY
σXσY

=
E[(X − E[X])(Y − E[Y])]√

E[(X − E[X])2] E[(Y − E[Y])2]
– σXY is the covariance, σX is the standard deviation
– E[X] is the expectation 3/25



Sample Correlation Coefficient

• Given a dataset (sample) D = {(x1 , y1), (x2 , y2), . . . , (xN , yN)},
the sample correlation coefficient r is computed as

r =
∑N

i=1(x i − x)(y i − y)√
∑N

i=1(x i − x)2 ∑N
i=1(y i − y)2 ,

x = 1
N

N

∑
i=1

x i , y = 1
N

N

∑
i=1

y i
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Properties of Correlation Coefficient

• −1 ≤ ρ ≤ 1 and 1, −1 are the strongest correlation

• X and Y are independent⟹ ρ(x) = 0
– X and Y are (statistically) independent if

P(X ∪ Y) = P(X)P(Y)
and denoted by X ⫫ Y

• However, [ρ(x) = 0⟹ X and Y are independent] does not hold
– ρ(x) can be 0 for nonlinear association
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Mutual Information

• For a pair of discrete random variables X and Y , the mutual
information is defined as

I(X , Y) = ∑
x∈X

∑
y∈Y

p(x , y) log ( p(x , y)
p(x)p(y) )

– p(x , y) is the joint probability, p(x) and p(y) are the marginal probability

• Properties:
– I(X , Y) ≥ 0
– I(X , Y) = H(X) + H(Y) − H(X , Y) = H(X) − H(Y ∣ X)

◦ H(X) is the entropy: −∑x∈X p(x) log p(x)
◦ H(X , Y) is the joint entropy: −∑x∈X ∑y∈Y p(x , y) log p(x , y) 6/25



Properties of Mutual Information

• Pros:
– The mutual information can measure both linear and nonlinear
associations
◦ X and Y are independent⟺ I(X , Y) = 0

• Cons:
– Additional discretization is needed to estimate the mutual information
for continuous variables

– Not normalized in the original form, but can be normalized by

I∗(X , Y) = I(X , Y)√
H(X)H(Y)
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Computing the p-value

• p-value shows the probability of getting the dataset with assuming
that there is no association between variables
– Often used in science, e.g. biology

• Permutation test can be used to compute the p-value
(i) Compute the association score s of the given dataset
(ii) Repeat the following h times and get h scores s1 , s2 , . . . , sh :

a. Fix x and permute indices of y
b. Compute the score using the permuted indices

(iii) The p-value = ∣{i ∈ [h] ∣ s i > s}∣ / h
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Manhattan Plot for Visualization
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Properties of Filter Method

• Pros:
– Easy to use
– Easy to understand

• Cons:
– Redundant features might be selected as interactions between
variables are not considered
◦ If a dataset contains exactly the same variables that have the strong
association with the target variable, both variables are selected
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Wrapper Method

• A wrapper method repeats to construct a classifier for each subset
of variables
(i) Given a dataset with n variables X 1 , X 2 , . . . , X n and a target variable Y
(ii) Repeat the following for every subset I ⊆ [n]

a. Construct a subset of the dataset using only variables in I
b. Apply classification and measure the goodness (e.g. MSE)

(i) Choose the best subset

• It is computationally too expensive if n is large
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EmbeddedMethod

• Variables are automatically selected during the process of learning a
prediction model from a dataset

• The representative method: the Lasso
– It learns a linear prediction model, where a set of variables, which
receive nonzero coefficients, is automatically selected in the learning
process by regularizing the number of variables

– The joint additive effect of selected variables maximizes the prediction
accuracy of the model
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The Lasso

• The Lasso is the following optimization problem

min
w ,w0

1
N

N

∑
i=1
(y i − ⟨w , x i⟩ − w0)2 s.t. ∥w∥1 ≤ t

– ∥w∥1 = ∑n
j=1 ∣w j∣ (ℓ1-norm)

– Minimizing squared error loss with the constraint

• The solution typically has many of the w j equal to zero
– { j ∈ [n] ∣ w j /= 0}, called the active set, is considered to be the set of
selected variables
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The Lasso

• More convenient Lagrange form of the Lasso;

min
w ,w0

1
2N

N

∑
i=1
(y i − ⟨w , x i⟩ − w0)2 + λ∥w∥1

• If we center the dataset beforehand, it can be written as

min
w

1
2N

N

∑
i=1
(y i − ⟨w , x i⟩)2 + λ∥w∥1 ,

min
w

1
2N

∥y − Xw∥22 + λ∥w∥1 ,
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Lasso Constraint

w1 w1

w2 w2

ŵ ŵ

squared-loss squared-loss

L1 constraint L2 constraint

solution solution
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Regularization Path (N = 1000, n = 100)
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MSE (N = 1000, n = 100)
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Fitting of the Lasso

• Solution of the Lasso problem satisfies the subgradient condition:

−
1
n ⟨x j , y − Xŵ⟩ + λs j = 0, j = 1, 2, . . . , n

– x j = (x j
1 , x

j
2 , . . . , x

j
N ) ∈ RN

– s j = sign(ŵ j) if ŵ j /= 0 and s j ∈ [−1, 1] if ŵ j = 0

• Thus we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

n
»»»»»⟨x j , y − Xŵ⟩»»»»» = λ, if w j /= 0,

− 1
n
»»»»»⟨x j , y − Xŵ⟩»»»»» ≤ λ, if w j = 0,

• ŵ is a piecewise-linear function w.r.t. λ→ LAR algorithm 18/25



Algorithm 1: Least Angle Regression
1 LAR(X , y)
2 Standardize X (mean zero, unit ℓ2 norm)
3 r0 = y − y,w0 ← (0, 0, . . . , 0)
4 Find x j which has the largest correlation ∣⟨x j , r0⟩∣
5 λ0 ← (1/N)∣⟨x j , r0⟩∣; A← { j}; XA ← X with only A = { j}
6 foreach k ∈ {1, 2, . . . , K = min{N − 1, n}} do
7 LAREach(X , y, A, λk−1, rk−1,w k−1)

19/25



Algorithm 2: Least Angle Regression
1 LAREach(X , y, A, λk−1, rk−1,w k−1)
2 δ ← (1/nλk−1)(X T

A X)−1X T
A rk−1

3 ∆ ← (0, 0, . . . , 0); ∆A ← δ
4 w(λ) ← w(k−1) + (λk−1 − λ)∆ for 0 < λ ≤ λk−1
5 r(λ) ← y − Xw(λ) = rk−1 − (λk−1 − λ)XAδ
6 Decrease λ and find ℓ /∈ A that first achieves (1/N)∣⟨x j , r(λ)⟩∣ = λ
7 A← A ∪ {ℓ}; w k ← β(λk); rk ← y − Xw(k)
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Dimension Reduction

• Dimension reduction also reduces the number of variables

• Variables are not directly selected but transformed into principal
variables

• t-SNE (t-distributed stochastic neighbor embedding) is recently
becoming a popular method and often used to visualize a
multi-dimensional dataset (van der Maaten and Hinton, 2008)
– This can be used for visualization
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t-SNE

• Given a dataset D = {x 1 , x 2 , . . . , xN}, define p j∣i for each i , j ∈ [N] as
p j∣i = exp (−∥x i − x j∥2/2σ2

i )
∑k/=i exp (−∥x i − x k∥2/2σ2

i )
– σi is the variance of the Gaussian centered on x i

– p i∣i = 0

• For the symmetricity, define p i j = (p j∣i + p i∣ j)/2
• Goal: Find low-dimensional y1 , y2 , . . . , yN of the original
x 1 , x 2 , . . . , xN with keeping the proxy between points
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How to Set Variance

• Given the perplexity as a parameter, which is defined as

Perp(Pi ) = 2H(Pi )
for a distribution Pi and its entropy H(Pi ) such that

H(Pi ) = −∑
j

p j∣i log p j∣i
• For each i ∈ [N], find σ2

i that satisfies the given perplexity

• In practice, the perplexity from 5 to 50 is recommended
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t-SNE Formulation

• For low-dimensional y i , y j of x i , x j ,

q i j =
exp (1 + ∥y i − y j∥2)

∑k/=l exp (1 + ∥yk − y l∥2)
• The cost C is the KL divergence: C = DKL(P, Q) = ∑i ∑ j p i j log

p i j

q i j

• t-SNE finds low-dimensional y1 , y2 , . . . , yN that minimizes the cost C
– The gradient descent can be used using the gradient

∂C
∂y i

= 4∑
j

(p i j − q i j)(y i − y j)
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Summary

• Feature selection can find relevant variables (features)
– Filter method, wrapper method, embedded method

• The Lasso is the representative embedded method

• t-SNE is the representative dimension reduction method
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