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BACKGROUND

.

How can we find outliers efficiently in massive datasets?
∘ Outliers are objects located far away from the remaining objects
∘ Outliers appear everywhere:

– Intrusions in network traffic, credit card fraud, defective products in industry,
medical diagnosis from X-ray images, …

∘ Specific task: Assign an outlierness score to each point using pairwise distances
– is distance-based approach has been successfully applied in various domains

∘ Example: th nearest neighbor [1,2], LOF [Breunig et al. SIGMOD 2000]
– It does not require to model the underlying probability distribution,
which is particularly challenging for high-dimensional data

Problem: Scalability
∘ Computation of all pairwise distances is needed: ( )
∘ Two state-of-the-art solutions

1. Partial computation to obtain only top- outliers
2. Indexing of objects

∘ Unfortunately, both strategies are not sufficient
1. e number of outliers oen increases in direct proportion to the size of the dataset,

which deteriorates the efficiency of partial computation
2. Index structures are oen not efficient enough for high-dimensional data

.

PROPOSAL: SAMPLING-BASED OUTLIER DETECTION

.

Solution: Sampling
∘ Given a dataset ( data points, dimensions)
∘ Randomly and independently sample a subset ( ) ⊂
∘ Define the score ( ) for each object ∈ as

( ) ∶
∈ ( )

( , )

– Input parameter: the number of samples | ( )|
– e time complexity is ( ) and the space complexity is ( )

6 samples
(randomely
        chosen)

Nearest neighbor
in samples

∘ Related work: Wu and Jermaine [3] proposed a sampling-based method:
– Our method: one-time sampling, their method: iterative sampling for each point

.

EXPERIMENTAL RESULTS

.

∘ Comparison partners:
thNN (the latest technique iORCA [2] is used), Wu and Jermaine’s method [3] (iterative

sampling), iForest (random forest-like method) [Liu et al. 2012], LOF, FastVOA (angle-
based method) [Pham and Pagh, 2012], One-class SVM [Schölkopf et al. 2001]
– Parameters were set to be the same in the original papers or popular values
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THEORETICAL ANALYSIS

.

Main results
∘ ( ; ): the set of Knorr and Ng’s DB( , )-outliers:

∈ ( ; ) if { ∈ ∣ ( , ) }

– ∈ ℝ is a distance threshold
– ∈ ℝ ( ) is the fraction of objects which locate far away from ;
this should be close to by definition of outliers

– NOTE: ese parameters are not needed in practice

∘ ( ; ) ⧵ ( ; ), the set of inliers
∘ Define ( ) as the minimum value s.t.

∀ ∈ ( ; ), { ∈ ∣ ( , ) }

∘ Result 1: For ∈ ( ; ) and ∈ ( ; ),

( ) ( ) ( )

( is the number of samples)
– is lower bound tends to be high in a typical
setting ( is large, is moderate)

∘ Result 2: is bound is maximized at

– is value tends to be small
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More detailed results
∘ A -partition 𝒫 of ( ; ): ∀ ∈ 𝒫 , , ∈ ( , ) and⋃ ∈𝒫 ( ; )
∘ For an outlier ∈ ( ; ) and a cluster ∈ 𝒫 ,

∀ ∈ , ( ) ( ) ( ) with ( | |)/

∘ Let ( ; ) ⊂ ( ; ) s.t. ∀ ∈ ( ; ), ∈ ( ; ) ( , ) , 𝒫 { ,… , } be
a -partition of ( ; ), and | |/| ( ; )| for each ∈ { , … , }

∘ Let ( ) ∑∀ ; ⪈ ( , … , ; , , … , ), where is the probability mass function of
the multinomial distribution, and | ( ; )|/ . en

∀ ∈ ( ; ), ∀ ∈ ( ; ), ( ) ( )
𝒫

( )

.

CONCLUSION

.

∘ Our method is much (2 to 6 orders of magnitude) faster than exhaustive methods
∘ Our method is the most effective on average

.
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