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Objective of This Lecture

• Learn a fundamental mechanism ofmachine learning
– Machine learning is a core process

in many applications in data mining

• Computational aspects of machine learning are
mainly discussed

• Key issues:
– Computing (single) vs Learning (double)

◦ Finite/infinite
– Learning targets (mathematical objects)

vs Representations (programs)
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Example of Learning from Data
(frommlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7, . . .
– What are succeeding numbers?
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Example of Learning from Data
(frommlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7, . . .
– What are succeeding numbers?

1, 2, 4, 7, 11, 16, . . . (an = an−1 + n − 1)
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Example of Learning from Data
(frommlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7, . . .
– What are succeeding numbers?

1, 2, 4, 7, 11, 16, . . . (an = an−1 + n − 1)
1, 2, 4, 7, 12, 20, . . . (an = an−1 + an−2 + 1)

2/32



Example of Learning from Data
(frommlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7, . . .
– What are succeeding numbers?

1, 2, 4, 7, 11, 16, . . . (an = an−1 + n − 1)
1, 2, 4, 7, 12, 20, . . . (an = an−1 + an−2 + 1)
1, 2, 4, 7, 13, 24, . . . (an = an−1 + an−2 + an−3)
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Example of Learning from Data
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• 1, 2, 4, 7, . . .
– What are succeeding numbers?

1, 2, 4, 7, 11, 16, . . . (an = an−1 + n − 1)
1, 2, 4, 7, 12, 20, . . . (an = an−1 + an−2 + 1)
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1, 2, 4, 7, 14, 28 (divisors of 28)
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Example of Learning from Data
(frommlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7, . . .
– What are succeeding numbers?

1, 2, 4, 7, 11, 16, . . . (an = an−1 + n − 1)
1, 2, 4, 7, 12, 20, . . . (an = an−1 + an−2 + 1)
1, 2, 4, 7, 13, 24, . . . (an = an−1 + an−2 + an−3)
1, 2, 4, 7, 14, 28 (divisors of 28)
1, 2, 4, 7, 1, 1, 5, . . . (decimals of π = 3.1415 . . ., e = 2.718 . . .)
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Example of Learning from Data
(frommlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7, . . .
– What are succeeding numbers?

1, 2, 4, 7, 11, 16, . . . (an = an−1 + n − 1)
1, 2, 4, 7, 12, 20, . . . (an = an−1 + an−2 + 1)
1, 2, 4, 7, 13, 24, . . . (an = an−1 + an−2 + an−3)
1, 2, 4, 7, 14, 28 (divisors of 28)
1, 2, 4, 7, 1, 1, 5, . . . (decimals of π = 3.1415 . . ., e = 2.718 . . .)

• 993 results (!) in the on-line encyclopedia of integer
sequences (https://oeis.org/) 2/32

https://oeis.org/


Analyze Learning as
Scientific/Engineering Problem

• Which is the correct answer (or generalization;汎化)
for succeeding numbers of 1, 2, 4, 7, . . . ?
– Any answer is possible!
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Analyze Learning as
Scientific/Engineering Problem

• Which is the correct answer (or generalization;汎化)
for succeeding numbers of 1, 2, 4, 7, . . . ?
– Any answer is possible!

• We should take two points into consideration:
(i) We need to formalize the problem of “learning”

(学習の定式化)
◦ There are two agents (teacher and learner) in learning,

which are different from “computation”
(ii) Learning is an infinite process (無限に続く過程)

◦ A learner usually never knows that
the current hypothesis is perfectly correct 3/32



Framework of Learning (ML vs DM)

User
(Teacher) (Learner)

Computer

Machine Learning

Data

Law that
generalizes
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Framework of Learning (ML vs DM)
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Computer
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Data Mining (Knowledge Discovery)
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(Natural phenome-

non, market, ...)

Data

Law that
generalizes
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Computation—
Core Engine of Learning/Mining

• Machine learning/data mining is usually achieved
using a computer (計算機)

• Computing behavior is mathematically formulated
by Alan Turing in 1936
– A. M. Turing,On Computable Numbers, with the Application to

the Entscheidungsproblem, Proceedings of the London
Mathematical Society, 42(1), 230–265, 1937

• The model of computation, known as a Turing machine
(チューリング機械), is developed for simulating
computation by human beings
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Turing Machine

Tape

MachineState

• The machine repeats the following:
– Read a symbol a of a cell
– Do the following from a and the current state s

according to a set of rules in its memory
◦ Replace the symbol a at the square
◦ Move the head
◦ Change the state s
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Computing vs Learning

• In computation, the process is completed on its own
– No interaction

◦ The Turing machine automatically works
according to programmed rules

– A finite process
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Computing vs Learning

• In computation, the process is completed on its own
– No interaction

◦ The Turing machine automatically works
according to programmed rules

– A finite process

• In learning, there are two agents (teacher and learner)
– Interaction between agents should be considered

◦ A learning protocol (学習プロトコル) between
a teacher and a learner is essentially needed

– An infinite process
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Formalization of Learning in
Computational Manner

1. What are targets of learning? (学習対象)

2. How to represent targets and hypotheses? （表現言語）

3. How are data provided to a learner? （データ）

4. How does the learner work? (学習手順，アルゴリズム)

5. When can we say that the learner correctly learns
the target? (学習の正当性)
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Learning of Binary Classifier
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Learning of Binary Classifier

wx + b = 0
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Example: Perceptron (by F. Rosenblatt, 1958)

• Learning target: two subsets F ,G ⊆ Rd s.t. F ∩ G = ∅

– Assumption: F and G are linearly separable
◦ There exists a function (classifier) f∗(x) = w∗x + b s.t.
f∗(x) > 0 ∀x ∈ F ,
f∗(x) < 0 ∀x ∈ G
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Example: Perceptron (by F. Rosenblatt, 1958)

• Learning target: two subsets F ,G ⊆ Rd s.t. F ∩ G = ∅

– Assumption: F and G are linearly separable
◦ There exists a function (classifier) f∗(x) = w∗x + b s.t.
f∗(x) > 0 ∀x ∈ F ,
f∗(x) < 0 ∀x ∈ G

• Hypotheses: hyperplanes on Rd

– If we consider a linear equation f (x) = wx + b, each line can
be uniquely specified by a pair of two parameters (w , b)

– Each hypothesis is represented by a pair (w , b)
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Example: Perceptron (by F. Rosenblatt, 1958)

• Learning target: two subsets F ,G ⊆ Rd s.t. F ∩ G = ∅

– Assumption: F and G are linearly separable
◦ There exists a function (classifier) f∗(x) = w∗x + b s.t.
f∗(x) > 0 ∀x ∈ F ,
f∗(x) < 0 ∀x ∈ G

• Hypotheses: hyperplanes on Rd

– If we consider a linear equation f (x) = wx + b, each line can
be uniquely specified by a pair of two parameters (w , b)

– Each hypothesis is represented by a pair (w , b)
• Data: a sequence of pairs (x1 , y1), (x2 , y2), . . .

– (x i , y i ): (a real-valued vector in Rd , a label)
– x i ∈ F ∪ G, y i ∈ {1,−1}, and y i = 1 (y i = −1) if x i ∈ F (x i ∈ G)13/32



Learning Model for Perceptron

F
G A hypothesis, a hyperplane

in general, is uniquely speci�ed
by a pair (w, b) 

(xi, 1)
(xj, –1) Data

f(x) = wx + b = 0
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Learning Procedure of Perceptron

1. w ← 0, b ← 0 (or a small random value) // initialization

2. for i = 1, 2, 3, . . . do

3. Receive i-th pair (x i , y i )
4. Compute a = ∑d

j=1 w
jx j

i + b

5. if y i ⋅ a < 0 then // x i is misclassified

6. w ← w + y i x i // update the weight

7. b ← b + y i // update the bias

8. end if

9. end for
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Correctness of Perceptron

• It is guaranteed that a perceptron always converges
to a correct classifier
– A correct classifier is a function f s.t.

f (x) > 0 ∀x ∈ F ,
f (x) < 0 ∀x ∈ G

– The convergence theorem (パーセプトロンの収束性定理)

• Note: there are (infinitely) many functions that correctly
classify F and G
– A perceptron converges to one of them
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Summary: Perceptron

Target Two disjoint subsets of Rd

Representation Two parameters (w , b) of linear
equation f (x) = wx + b

Data Real vectors from target subsets

Algorithm Perceptron

Correctness Convergence theorem
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Example 2: Maximum Likelihood
Estimation

• Estimate the probability of a coin being a head in a toss

Target Bernoulli distribution

Representation Parameter (probability) p

Data Sampling

Algorithm Maximum Likelihood Estimation

p̂ = k/n
Correctness Consistency
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Basic Definitions of Learning

• Target (学習対象): a classifier (分類器) f∗ ∶ X → {0, 1}
– A class C of classifiers is usually pre-determined
– Each target can be viewed as the set F∗ = {a ∈ X ∣ f∗(a) = 1}

◦ F∗ is called a concept (概念)
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Basic Definitions of Learning

• Target (学習対象): a classifier (分類器) f∗ ∶ X → {0, 1}
– A class C of classifiers is usually pre-determined
– Each target can be viewed as the set F∗ = {a ∈ X ∣ f∗(a) = 1}

◦ F∗ is called a concept (概念)

• Hypothesis space (仮説空間): R
– Each hypothesis H ∈ R represents a classifier
– R ⊆ Σ∗ usually holds (Σ∗ is the set of finite strings)

• Data: Example (例) (a, f∗(a))
– a ∈ X
– An example (a, 1) is called positive (正例)
– An example (a, 0) is called negative (負例)
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Learning Model

X

A class of
classi�ers

A target classi�er
(concept) f*

Hypothesis

(x1, 0), (x2, 1),
(x3, 1), (x4, 0), ...

Learner

Data
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Learning Model (e.g. Perceptron)

ℝd

A class of
linearly
separable sets

A target of linear
equation f*

Perceptron(w, b)

Data
(x1, 0), (x2, 1),
(x3, 1), (x4, 0), ...

(in f(x) = wx + b)
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Gold’s Learning Model
(Identification in the Limit)

• Gold gave the first basic learning model, called
“Identification in the limit”
– E. M. Gold, Language identification in the limit, Information and

Control, 10(5), 447–474, 1967

• This model was originally introduced to analyze
the learnability of formal languages
– His motivation was to model infant’s learning process of

natural languages
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Formal Languages

• Alphabet (アルファベット) Σ: a nonempty finite set
– Each element a ∈ Σ is called a symbol (記号)

• Word (語) w = a1a2 . . . an : a finite sequence of symbols
– Null word (空語) ε, whose length is 0

• The set of words Σ∗ (with ε) and Σ+ (without ε)
Σ∗ = { a1a2 . . . an ∣ a i ∈ Σ, n ≥ 0 }
Σ+ = { a1a2 . . . an ∣ a i ∈ Σ, n ≥ 1 } = Σ∗ \ {ε}

• Formal language (形式言語): a subset of Σ∗
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Representation of Languages

• We connect syntax and semantics using a mapping f

• Given a hypothesis H ∈ R, f (H,w) is a function
that returns 0 or 1 for w ∈ Σ∗

– H is a program of a classifier
– w is a (binary) code of the input to H

• L(H) = {w ∈ Σ∗ ∣ f (H,w) = 1 }
• R is usually a recursively enumerable set (帰納的可算集合)

– There is an algorithm that enumerates all elements ofR
– R is often identified with N

◦ Each natural number encodes a classifier (hypothesis)
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Setting of Gold’s Learning Model

• A class of languages C ⊆ { A ∣ A ⊆ Σ∗ } is chosen
• For a language L ∈ C, an infinite sequence
σ = (x1 , y1), (x2 , y2), . . . is a complete presentation
(完全提示) of L if
(i) {x1 , x2 , . . . } = Σ∗

(ii) y i = 1 ⟺ x i ∈ L for all i
– σ[i] = (x1 , y1), . . . , (x i , y i ) (a prefix of σ)

• A learner (学習者) is a procedure M that receives σ and
generates an infinite sequence of hypotheses
γ = H1 , H2 , . . .
– M outputs H i if it gets σ[i]
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Identification in the Limit

• If γ converges to some hypothesis H and H represents L,
we say that M identifies L in the limit (極限学習する)

• If M identifies any L ∈ C in the limit,
we say that M identifies C in the limit
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Basic Strategy: Generate and Test

• Input: a complete presentation σ of a language L

• Output: γ = H1 , H2 , . . . ,

1. i ← 1, S ← ∅

2. Repeat

3. S ← S ∪ {(x i , y i )}
4. k ← min { j ∈ N ∣ L(H( j)) consistent with S }
5. // H( j) is a hypothesis encoded by a natural number j

6. H i ← H(k) and output H i

7. i ← i + 1

8. until forever
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Power of Generate and Test Strategy

• For any class C of languages, Generate and Test strategy
identifies C in the limit
– That is, Generate and Test strategy identifies

every language L ∈ C in the limit

• Unfortunately, this strategy is very inefficient
– More intelligent strategy can be designed

for each learning target
– One of themost important tasks in studies of
machine learning!
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Learning from Positive Data

• In many cases, in particular in data mining,
we obtain only positive data
– Imagine supervised vs unsupervised learning

• A positive presentation (正提示) of a language L ∈ C
is an infinite sequence x1 , x2 , . . . s.t. L = {x1 , x2 , . . . }

• If γ (an infinite sequence of hypotheses of a learner M)
converges to a hypothesis H s.t. L(H) = L,
we say that M identifies L in the limit from positive data
(正例から極限学習する)
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Limitation of
Learning from Positive Data

• Consider the following class C
(i) All finite languages are included in C
(ii) At least one infinite language is included in C
– C is called superfinite (超有限)

• Gold proved that a superfinite class cannot be learned
from positive data
– e.g. Σ = {a}, C contains all finite languages and {an ∣ n ≥ 1}

• Although this fact shows a limitation, there still exist rich
classes of interesting languages
– For example, pattern language (パターン言語) 31/32



References

• If you are interested in computational learning theory,
the following books might be interesting:
– 榊原康文,横森貴,小林聡,計算論的学習,培風館, 2001
– S. Jain, D. N. Osherson, J. S. Royer, A. Sharma, Systems That

Learn, A Bradford Book, 1999

• These books are not necessarily for this lecture
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