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Today’s Outline

- Recap the main points of last week’s lecture

- Consider the of a hypothesis space
— Essential to efficiently

- Understand the hypothesis space as a (FIEFER)
- Introduce the key concept of a ({5=1Mb)

operator to traverse the (structured) hypothesis space
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Framework of Learning (ML vs DM)
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Formalization of Learning
in Computational Manner

1. What are of learning? (ZE X R)
— Each target ( ) C is a subset of the domain X (C ¢ X)
- A C is a collection of concepts (C € P(X ))

2. How to targets and hypotheses? (XRIZS:E)
- Weusea H
— Each hypothesis H € H represents a concept v(H) € X

3. How are provided to a learner? (7—%)

4. How does the learner P (FEFE ZILTUXLAL)

5. When can we say that the learner learns

the target? (& D IE L) 3/26



Learning Model
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Gold’s Learning Model on Languages

- A conceptspaceC c {A| Ac X" }ischosen

- Foralanguage C € C, an infinite sequence

0 = (X, Y1), (X5, ¥2), ... IS @
(5e&1ER) of Cif

(i) {x, x,,...} =%
(i) yj=1 & x; € Cforalli

- A is a procedure M that receives o and generates
an infinite sequence of hypothesesy = H,, H,, ...

- If y converges to some hypothesis H and u(H) = C, we say
that (IfRFEE T D)

— If M identifies any C € C in the limit,
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Consistency of Hypotheses

- Alanguage Cis (x,y) (FET D) if
(y=1andx ¢ C)or(y =oand x € C)

- Cis (x, y) if C is not inconsistent with (x, y)

- Forasetof examples S = {(x;, V1), ..., (X0, ¥n) }»
Cis S(CIESICEFE)
if C is consistent with every (x,y) € S
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Basic Strategy: Generate and Test

- Input: a complete presentation o of alanguage C € C

- Qutput:y=H,,H,,...

1.
2.
3.

4
5.
6.
/
8
9

| <1,S <O
repeat
S« Su{lx,yi)}
while u(H) is not consistent with S do

H « the next hypothesis in the hypothesis space H

end while
H; « H and output H,;

| «< 1 +1

. until forever
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Power of Generate and Test Strategy
and Its Problem

- For any class C of languages,

— That s, Generate and Test strategy identifies every language
C € Cinthe limit

- Unfortunately, this strategy is not realistic
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Power of Generate and Test Strategy
and Its Problem

- For any class C of languages,

— That s, Generate and Test strategy identifies every language
C € Cinthe limit

- Unfortunately, this strategy is not realistic

- What is needed for more efficient learning?

— An is essential!
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Structurization of Hypothesis Space

- To search hypotheses,

(i) The of the hypothesis space H
(i) An that enables to traverse the space

are indispensable

1. The structured space is mathematically modeled

as a (partially ordered set; HIEF£S)
2. As an operator, we use (f5Z1k)

— For each hypothesis, a learner can “refine” it and
derive a set of one level specific hypotheses
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Structurization of Hypothesis Space

No structure
in hypothesis space

!
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Structurization of Hypothesis Space

No structure
in hypothesis space

(Z =

Poset with refinement
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Structurization of Hypothesis Space

No structure
in hypothesis space

!

Subset inclusion
Poset with refinement relationships in
concept space

-
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Poset

—~
1

- A 2lEF) is a binary relation < s.t.
1.X < X (reflexivity; RE47E)
>.(x<yandy < x)=x=y (antisymmetry; RXI#{E)
3.(x<yandy<z)=x <z (transitivity; &)

- A set X with a partial order <, denoted as ,is called
a ( s F¥IEFER)
— The (supremum; sx/\ E57) of S € X is
theleast x e Xst. Vse€ S, s < x
— The (infimum; &= KF5%) of S c X is

thegreatest x e Xst. Vse€ S, x <s
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Lattice

- We use “v" (#§0") and “A" (B0 D)
- x VvV y =sup{x, y} (join of x and y)
o ForSc X,vS=supS$S
- x Ay =inf{x, y} (meet of x and y)
o ForSc X,AS =inf§

- Aposet(X,<)isa (R) if x v yand x A y exist
forall x,y € X

- Examples:

— The power set P(X) of any set X (we translate “c” as <)
— The set of natural numbers N w.r.t “<”

— The Cartesian product Nx N = {(a,b) | a,b € N},

(a,b) < (a,b)ifa<a andb<b 12/26



The Power Set Is a Lattice
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Definition of Refinement

- Assume that our hypothesis space (#, <) is a poset and
G < H= u(G) € u(H)
G = H= u(G) = u(H)

— ushould be a (CEREE %) that preserves
structure between C and H

- A (FEZ1E) is a mapping p : H — 27" s.t.
1. VH € H, p(H) is finite
2.Gep(H=>G=<H
3. YH € H, thereis no infinite sequence H,, H,, ... s.t.
H=H,and H, € p(H;;,)
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Semantically Complete Refinement

. We write X 5 Yif Y € p(X)

* . P
— - is zero or more applications of -

- A refinement p is (BEMICTES) if

{U(G)‘H$G}={CeC|cCu(H)}

— Start from H, we can find any C c u(H) by applying 5
— If this condition is not satisfied, we will miss some concepts
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Pioneers of Refinement

- Refinement is (implicitly) used in various contexts

— |t can be viewed as an online construction of search space
with tree-like structure

- It has been explicitly introduced in
by Shapiro in 1981

- E.Y. Shapiro, An Algorithm That Infers Theories from Facts,
[JCAI, 1981

- Plotkin considered the opposite direction
(from specific to general)

— G. D. Plotkin, A further note on inductive generalization,
Machine Intelligence, 1970

16/26



Examples of Refinement

- Let us consider concrete examples of refinement and
learning

- We use two simple examples:

- (LEBIEE8)
— The set of pairs of natural numbers
N*=NxN={(a,b)|abeN}
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Regular Language (1/2)

- Given an alphabet X

- ForaeX a’=aa,a’ =aaaq,...
- X =g, X" ={au|aeX,ue X"} (nz=n)

- Fora (IEBIZRIE, RE) H, u(H) is a
(LERIS3E)
- gisanRE u(2) = @
- Ya € 3,aisanRE; u(a) = {a}
- If X and Y are REs,
o X+ YisanRE; u(X +Y)=XuUY (union)
o XY isan RE; u(XY) {ab| a € X,b €Y} (concatenation)

o X“isanRE; u(X")=J{X" | n=0}
( 7') *H2)
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Regular Language (2/2)

- Let> ={a,,a,,...,a,}

- We denote by T the language (a, + a, + -+ a,)”
- y(T)=2"
- The largest language over X

- Examples:
- AssumethatX ={a, t, g c}

- vlat +g) = {e, at, g, gg geg. - - }
- u((a+c)")={g a c,aa, ac, ca cc,aaa,...}

- u(T)={¢a,t,gc,aa at,...}
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Refinement on Regular Languages

(from P. D. Laird, Learning from Good and Bad Data, 1988)

Y
&)

O 0 N OB~ W=

XSy=x+z5yv+7
XS3Yy=7z+x3z+v
XSy=x*3y
XSy=xz5vz
XS5y=2zx5zy
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Examples of Refinement on Regular
Languages

- Let> ={0, 1}
cT=0+1)"50+150+150+0

- T=(0+1)" 3 (0+1) (0+1)* 3 (0+1)*(0+1) 5 (0+1)(0+1)
— u((0 + 1)(0 + 1)) = {00, 01, 10, 11}
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Efficient Learning with Refinement

. ie1,S< 3, HeT,Q« @ //Qisalist of candidate hypotheses
repeat
S« Su{(xiyi)}
while H is not consistent with S
if x € u(H) for some (x,0) € S then
Append all p(H) to the tail of Q
end if
H < the first hypothesis in Q, and remove it from Q
end while
H; « H and output H,

| « | +1

- O v N WU bk WDN =

— —

12. until forever 22/26



Hypothesis Space on N*

- H={a#b | a,b e N}

- atb <ct#tdifa>cand b >d
— Note that we invert < for mathematical convenience

3#0;)\/2#1\/(5\1 #27 0#310)
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Refinement on N*

- We consider the following concept space C:
C={1a,b)|abeN},
where
Ma,b)={(c,d)eN*|a<cb=sd}

— Asubset O c N’ s.t. (a,b) € O = 1(a, b) € O is known to be
on the

- Define u(a#b) = 1(a, b)

- Refinement is given as follows:

1. a#tb 5 (a +1)#b

2. a#b 5 a#(b +1) 24/26



Refinement on Sets of N*

- We can further treat a (finite) set of 1(a, b) as a concept
« Hs ={a,#b, + a,#b, +---+ a,#b, | a;,b;,n € N}
- Cs={C|CcC={1(a,b)|abeN}, Cisfinite }
- u(a,#b, +---+a,#b,) =1(a,, b,)u---ut(a,,b,)
- Refinement is given as follows:
1. a#b 5 (a +1)#b
> ab 5 a#(b +1)

XS Y= x+ZzZ85yv+zandZz+x 574y

o
4.X > X+ X 5/26



How about R?

- Let us consider the set of
— One of the most important objects in machine learning

- Each real number x € R is represented as an

- e.g., use infinite with X ={o,1,...,9}
— Let x be a representation of x

- Obviously, we cannot treat all elements in R as we cannot
determine x € R from x in finite time

- We can just treat of infinite sequences, and
uw)={x € R|wE x}, which forms an on R
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