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Today’s Outline

• Recap the main points of last week’s lecture

• Consider the structure of a hypothesis space
– Essential to efficiently search candidate hypotheses

• Understand the hypothesis space as a poset (半順序集合)

• Introduce the key concept of a refinement (精密化)
operator to traverse the (structured) hypothesis space
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Formalization of Learning
in Computational Manner

1. What are targets of learning? (学習対象)
– Each target (concept) C is a subset of the domain X (C ⊆ X )
– A concept space C is a collection of concepts (C ⊆ P(X))

2. How to represent targets and hypotheses? （表現言語）
– We use a hypothesis space H
– Each hypothesis H ∈ H represents a concept υ(H) ⊆ X

3. How are data provided to a learner? （データ）
4. How does the learner work? (学習手順，アルゴリズム)

5. When can we say that the learner correctly learns
the target? (学習の正当性) 3/26
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Gold’s Learning Model on Languages

• A concept space C ⊆ { A ∣ A ⊆ Σ∗ } is chosen
• For a language C ∈ C, an infinite sequence
σ = (x1 , y1), (x2 , y2), . . . is a complete presentation
(完全提示) of C if
(i) {x1 , x2 , . . . } = Σ∗

(ii) y i = 1 ⟺ x i ∈ C for all i

• A learner is a procedure M that receives σ and generates
an infinite sequence of hypotheses γ = H1 , H2 , . . .

• If γ converges to some hypothesis H and υ(H) = C , we say
that M identifies C in the limit (極限学習する)
– If M identifies any C ∈ C in the limit,

M identifies C in the limit 5/26



Consistency of Hypotheses

• A language C is inconsistent with (x , y) (矛盾する) if(y = 1 and x /∈ C) or (y = 0 and x ∈ C)
• C is consistent with (x , y) if C is not inconsistent with (x , y)
• For a set of examples S = { (x1 , y1), . . . , (xn , yn) },
C is consistent with S (CはSに無矛盾)
if C is consistent with every (x , y) ∈ S
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Basic Strategy: Generate and Test

• Input: a complete presentation σ of a language C ∈ C
• Output: γ = H1 , H2 , . . .

1. i ← 1, S ← ∅

2. repeat
3. S ← S ∪ {(x i , y i )}
4. while υ(H) is not consistent with S do
5. H ← the next hypothesis in the hypothesis spaceH
6. end while
7. H i ← H and output H i

8. i ← i + 1
9. until forever 7/26



Power of Generate and Test Strategy
and Its Problem

• For any class C of languages, Generate and Test strategy
identifies C in the limit
– That is, Generate and Test strategy identifies every language

C ∈ C in the limit

• Unfortunately, this strategy is not realistic
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Power of Generate and Test Strategy
and Its Problem

• For any class C of languages, Generate and Test strategy
identifies C in the limit
– That is, Generate and Test strategy identifies every language

C ∈ C in the limit

• Unfortunately, this strategy is not realistic

• What is needed for more efficient learning?

→ An efficient search of candidate hypotheses is essential!
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Structurization of Hypothesis Space

• To search hypotheses,
(i) The structure of the hypothesis spaceH
(ii) An operator that enables to traverse the space

are indispensable

1. The structured space is mathematically modeled
as a poset (partially ordered set;半順序集合)

2. As an operator, we use refinement (精密化)
– For each hypothesis, a learner can “refine” it and

derive a set of one level specific hypotheses
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Structurization of Hypothesis Space

No structure
in hypothesis space
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Structurization of Hypothesis Space

No structure
in hypothesis space Poset with re�nement
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Structurization of Hypothesis Space
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Poset

• A partial order (半順序) is a binary relation ≤ s.t.
1. x ≤ x (reflexivity;反射律)

2. (x ≤ y and y ≤ x) ⇒ x = y (antisymmetry;反対称律)

3. (x ≤ y and y ≤ z) ⇒ x ≤ z (transitivity;推移律)

• A set X with a partial order ≤, denoted as (X , ≤), is called
a partially ordered set (poset;半順序集合)
– The least upper bound (supremum;最小上界) of S ⊆ X is

the least x ∈ X s.t. ∀s ∈ S, s ≤ x
– The greatest lower bound (infimum;最大下界) of S ⊆ X is

the greatest x ∈ X s.t. ∀s ∈ S, x ≤ s
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Lattice

• We use join “∨” (結び) and meet “∧” (交わり)
– x ∨ y = sup{x , y} (join of x and y)

◦ For S ⊆ X , ∨S = sup S

– x ∧ y = inf{x , y} (meet of x and y)
◦ For S ⊆ X , ∧S = inf S

• A poset (X , ≤) is a lattice (束) if x ∨ y and x ∧ y exist
for all x , y ∈ X

• Examples:
– The power set P(X) of any set X (we translate “⊆” as ≤)
– The set of natural numbers Nw.r.t “≤”
– The Cartesian product N × N = { (a, b) ∣ a, b ∈ N },(a, b) ≤ (a′ , b′) if a ≤ a′ and b ≤ b′
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The Power Set Is a Lattice

Ø
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Definition of Refinement

• Assume that our hypothesis space (H, ≼) is a poset and
G ≼ H ⇒ υ(G) ⊆ υ(H)
G ≡ H ⇒ υ(G) = υ(H)
– υ should be a homomorphism (準同型写像) that preserves

structure between C andH

• A refinement (精密化) is a mapping ρ ∶ H → 2H s.t.
1. ∀H ∈ H, ρ(H) is finite
2. G ∈ ρ(H) ⇒ G ≼ H

3. ∀H ∈ H, there is no infinite sequence H1 , H2 , . . . s.t.
H = H1 and H i ∈ ρ(H i+1)
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Semantically Complete Refinement

• We write X
ρ
→ Y if Y ∈ ρ(X)

–
∗
→ is zero or more applications of

ρ
→

• A refinement ρ is semantically complete (意味的に完全) if{ υ(G) »»»»»» H ∗
→ G } = { C ∈ C ∣ C ⊂ υ(H) }

– Start from H, we can find any C ⊂ υ(H) by applying
ρ
→

– If this condition is not satisfied, we will miss some concepts
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Pioneers of Refinement

• Refinement is (implicitly) used in various contexts
– It can be viewed as an online construction of search space

with tree-like structure

• It has been explicitly introduced in Model Inference
System by Shapiro in 1981
– E. Y. Shapiro, An Algorithm That Infers Theories from Facts,
IJCAI, 1981

• Plotkin considered the opposite direction
(from specific to general)
– G. D. Plotkin, A further note on inductive generalization,
Machine Intelligence, 1970
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Examples of Refinement

• Let us consider concrete examples of refinement and
learning

• We use two simple examples:
– Regular language (正則言語)
– The set of pairs of natural numbers

N2 = N × N = { (a, b) ∣ a, b ∈ N }
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Regular Language (1/2)

• Given an alphabet Σ
– For a ∈ Σ, a2 = aa, a3 = aaa, . . .
– X0 = ∅, X n = { au ∣ a ∈ X , u ∈ X n−1 } (n ≥ 1)

• For a regular expression (正則表現, RE) H, υ(H) is a
regular language (正則言語)
– ∅ is an RE; υ(∅) = ∅
– ∀a ∈ Σ, a is an RE; υ(a) = {a}
– If X and Y are REs,

◦ X + Y is an RE; υ(X + Y) = X ∪ Y (union)
◦ XY is an RE; υ(XY) = { ab ∣ a ∈ X , b ∈ Y } (concatenation)
◦ X∗ is an RE; υ(X∗) = ⋃ { X n ∣ n ≥ 0 }

(Kleene closure;クリーネ閉包)
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Regular Language (2/2)

• Let Σ = {a1 , a2 , . . . , an}
• We denote by⊤ the language (a1 + a2 + ⋅ ⋅ ⋅ + an)∗

– υ(⊤) = Σ∗

– The largest language over Σ

• Examples:
– Assume that Σ = {a, t, g, c}
– υ(at + g

∗) = {ε, at, g, gg, ggg, . . . }
– υ((a + c)∗) = {ε, a, c, aa, ac, ca, cc, aaa, . . . }
– υ(⊤) = {ε, a, t, g, c, aa, at, . . . }
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Refinement on Regular Languages
(from P. D. Laird, Learning fromGood and Bad Data, 1988)

1. X
ρ
→ X + X

2. X∗ ρ
→ X∗X∗

3. X∗ ρ
→ (X∗)∗

4. a
ρ
→ ∅ (a ∈ Σ)

5. X∗ ρ
→ X

6. X
ρ
→ Y ⇒ X + Z

ρ
→ Y + Z

7. X
ρ
→ Y ⇒ Z + X

ρ
→ Z + Y

8. X
ρ
→ Y ⇒ X∗ ρ

→ Y∗

9. X
ρ
→ Y ⇒ XZ

ρ
→ YZ

10. X
ρ
→ Y ⇒ ZX

ρ
→ ZY
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Examples of Refinement on Regular
Languages

• Let Σ = {0, 1}
• ⊤ = (0 + 1)∗ ρ

→ 0 + 1
ρ
→ ∅ + 1

ρ
→ ∅ + ∅

• ⊤ = (0+1)∗ ρ
→ (0+1)∗(0+1)∗ ρ

→ (0+1)∗(0+1) ρ
→ (0+1)(0+1)

– υ((0 + 1)(0 + 1)) = {00, 01, 10, 11}
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Efficient Learning with Refinement

1. i ← 1, S ← ∅, H ← ⊤, Q ← ∅ // Q is a list of candidate hypotheses
2. repeat
3. S ← S ∪ {(x i , y i )}
4. while H is not consistent with S

5. if x ∈ υ(H) for some (x , 0) ∈ S then
6. Append all ρ(H) to the tail of Q
7. end if
8. H ← the first hypothesis in Q, and remove it from Q

9. end while
10. H i ← H and output H i

11. i ← i + 1

12. until forever 22/26



Hypothesis Space on N2

• H = { a#b ∣ a, b ∈ N }
• a#b ≤ c#d if a ≥ c and b ≥ d

– Note that we invert ≤ for mathematical convenience

0#0
1#0

2#0
3#0

0#1
0#2

0#3
1#1

2#1 1#2
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Refinement on N2

• We consider the following concept space C:
C = { ↑(a, b) ∣ a, b ∈ N } ,
where
↑(a, b) = { (c, d) ∈ N2 ∣ a ≤ c, b ≤ d }
– A subset O ⊆ N2 s.t. (a, b) ∈ O ⇒ ↑(a, b) ⊆ O is known to be

open on the Alexandroff topology

• Define υ(a#b) = ↑(a, b)
• Refinement is given as follows:

1. a#b
ρ
→ (a + 1)#b

2. a#b
ρ
→ a#(b + 1) 24/26



Refinement on Sets of N2

• We can further treat a (finite) set of ↑(a, b) as a concept

• HS = { a1#b1 + a2#b2 + ⋅ ⋅ ⋅ + an#bn ∣ a i , b i , n ∈ N }
• CS = { C ∣ C ⊆ C = { ↑(a, b) ∣ a, b ∈ N } , C is finite }
• υ(a1#b1 + ⋅ ⋅ ⋅ + an#bn) = ↑(a1 , b1) ∪ ⋅ ⋅ ⋅ ∪ ↑(an , bn)
• Refinement is given as follows:

1. a#b
ρ
→ (a + 1)#b

2. a#b
ρ
→ a#(b + 1)

3. X
ρ
→ Y ⇒ X + Z

ρ
→ Y + Z and Z + X

ρ
→ Z + Y

4. X
ρ
→ X + X 25/26



How about R?

• Let us consider the set of real numbers R
– One of the most important objects in machine learning

• Each real number x ∈ R is represented as an infinite
sequence
– e.g., use infinite decimal expansions with Σ = {0, 1, . . . , 9}
– Let x be a representation of x

• Obviously, we cannot treat all elements inR as we cannot
determine x ∈ R from x in finite time

• We can just treat prefixes of infinite sequences, and
υ(w) = { x ∈ R ∣ w ⊑ x }, which forms an open set on R
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