December 6， 2016

Discretization and Learning

Data Mining Theory（データマイニングエ学）

Mahito Sugiyama（杉山麿人）

Today＇s Outline

－Recap the main points of last week＇s lecture
－Discretization on learning
－Real number computation（実数計算）
－Learning＝computing＝discretization？
－All slides are at： http：／／mahito．info／materials．html

Structurization of Hypothesis Space

－To search hypotheses，
（i）The structure of the hypothesis space \mathcal{H}
（ii）An operator that enables to traverse the space are indispensable
－The structured space is mathematically modeled as a poset（partially ordered set；半順序集合）
－As an operator，we use refinement（精密化）
－For each hypothesis，a learner can＂refine＂it and derive a set of one level－specific hypotheses

Structurization of Hypothesis Space

No structure in hypothesis space

Poset with refinement

Subset inclusion relationships in concept space

Discretization and Learning

Analog data (reals)		
	Feature A	Feature B Class
1		1
2		0
3		1
4		0

Goal: Learning of a classifier

Discretization and Learning

Discretization by measurement
Goal: Learning of a classifier

Discretization and Learning

Analog data (reals)

	Feature A	Feature B	Class	Feature A	Featur	Class
1	-1	-1	1	1.5	0.6	1
2	-	-1	0	0.6	0.2	0
3	سلسلسا	لسا	1	1.1	0.4	1
4	سسلسلسلسا	سلسا		1.8	0.7	0

Discretization by measurement
Goal: Learning of a classifier

Discretization and Learning

Analog data (reals)

	Feature A	Feature B Class	Feature A Feature B Class		
1	$\frac{1}{1.539582 \ldots \ldots}$	$\frac{\text { Lـ1 }}{0.6069 \text {... } 1}$	1.5	0.6	1
2		-1.2655... 0	0.6	0.2	0
3	$\frac{\text { سلسسلسسا }}{1.111577 . .}$	$\begin{aligned} & \text { 0.4998... } 1 \end{aligned}$	1.1	0.4	1
4	سسلسسلسسلسا...	$\begin{aligned} & \text { سسلسا... } 0.7569 \\ & 0.0 \end{aligned}$	1.8	0.7	0

Discretization by measurement
Goal: Learning of a classifier

Discretization and Learning

Analog data (reals)

Discretization by measurement
Goal: Learning of a classifier

Fatal Error Caused by Discretization

- Solve the system of equations [Schröder, 2003]
$40157959.0 x+67108865.0 y=1$
$67108864.5 x+112147127.0 y=0$
- We can solve by the well-known formula:

$$
x=\frac{b_{1} a_{22}-b_{2} a_{12}}{a_{11} a_{22}-a_{21} a_{12}}, \quad y=\frac{b_{2} a_{11}-b_{1} a_{21}}{a_{11} a_{22}-a_{21} a_{12}}
$$

- Computation by floating point arithmetic with double precision variables (IEEE 754):
$x=112147127, y=-67108864.5$
- Correct solution:
$x=224294254, \quad y=-134217729$

Treat Data as Intervals

Analog data (reals)

	Feature A	Feature B Class	Feature A	Featur	Class
1	$\frac{1}{L_{1.539582 . . . ~}^{1}}$	$\begin{aligned} & \text { Lـ1ـ1.1.... } \\ & 0.6069 \end{aligned}$	1.2~1.6	0.6~0.8	1
2	$\frac{1}{0.676711 \ldots . .}$		0.4~0.8	0.2~0.4	0
3	$\begin{aligned} & \text { سلسسلسا7... } \\ & \text { 1.111577 } \end{aligned}$	1	1.1~1.2	0.4~0.5	1
4	سسلسسلسسلسا...	0	1.8~1.9	0.7~0.8	0

Discretization by measurement
Goal: Learning of a classifier

Geometric Point of View

Digital data (rationals)

Feature A Feature B Class

$$
\begin{array}{lll}
1.2 \sim 1.6 & 0.6 \sim 0.8 & 1 \\
0.4 \sim 0.8 & 0.2 \sim 0.4 & 0 \\
1.1 \sim 1.2 & 0.4 \sim 0.5 & 1 \\
1.8 \sim 1.9 & 0.7 \sim 0.8 & 0
\end{array}
$$

- Discretized data are intervals in \mathbb{R}^{d}
- The width of an interval corresponds to the error of a data point
- A learner finds a set intersecting intervals of class 1

How to Compute Real Numbers?

- Consider computation of $f(x)=3 \cdot x$
- For example: $f(1 / 3)=3 \cdot 1 / 3$
- Since $1 / 3=0.33333 \ldots$, a computer should output 0.99999 ... (or 1.00000 . . .)
- However, it cannot output any digit since:
- If an input is $0.333 \ldots$ forever, the output is $0.999 \ldots$
- If an input is $0.333 \ldots 34$ at some point, the output is $1.000 \ldots 02$
- Thus the computer cannot determine even the first digit at any moment

What is Problem in Real Number Computation？

－The problem is caused by the representation of real numbers（実数表現）
－Decimal representation（10進表現）lacks redundancy（冗長性）
－We need more sequences that represent the same number
－Solution：signed digit representation（符号付き 2進数）
－Use three symbols：1，0，and $\overline{1}$（ $\overline{1}$ means－1）and defined as：

$$
\rho\left(a_{1} a_{2} \ldots\right)=\sum_{i=1}^{\infty} a_{i} \cdot 2^{-i}
$$

－Same as the binary representation if we use only 0 and 1

Signed Digit Representation

10/28

Signed Digit Representation

Signed Digit Representation

10/28

Signed Digit Representation

Gray Code

－Using signed digit representation，we can achieve computation over reals in a natural sense
－Another interesting representation is Gray code（グレイコ ード）by Frank Gray（1947）and Émile Baudot（1878）
－Originally，another binary encoding of natural numbers
－Important in applications of conversion between analog and digital information［Knuth，2005］
－Gray codes for natural numbers：

	0	1	2	3	4	5	6	7
Binary	000	001	010	011	100	101	110	111
Gray	000	001	011	010	110	111	101	100

Gray Code Embedding

－Gray code can be used for real number representation
－We use three symbols 0,1 ，and \perp
－The Gray code embedding（グレイコード埋め込み）is an injection γ_{G} that maps $x \in[0,1]$ to an infinite sequence $p_{0} p_{1} p_{2} \ldots$ ，where
$-p_{i}:=1$ if $2^{-i} m-2^{-(i+1)}<x<2^{-i} m+2^{-(i+1)}$ for an odd m ，
－$p_{i}:=0$ if the same holds for an even m ，
－$p_{i}:=\perp$ if $x=2^{-i} m-2^{-(i+1)}$ for some integer m
－Power of representations for real number computation：
Gray code＝signed digit representation［Dusky，2002］
＞binary representation

Gray Code on Reals

13/28

Gray Code on Reals

13/28

Binary Representation

Binary Representation

Computation via Type-2 Machine

- Computation of real numbers is realized as conversion between their representations (infinite sequences)
- Computation on infinite sequences in Σ^{ω} is formulated using Type-2 machine

$$
\begin{array}{cc}
\Sigma^{\omega} \xrightarrow{g} & \Sigma^{\omega} \\
\xi \downarrow & \\
\downarrow & \downarrow \\
x \xrightarrow[f]{ } & \gamma
\end{array}
$$

Type-2 Machine

Discretization and Learning

－In finite time，a computer（Type－2 machine）receives a finite prefix（接頭辞）of an infinite sequence that represents a real number
－The input is thus discretized（離散化）
－A computer continues to output succeeding digits of output which is getting closer to the true value

Discretization and Learning

－In finite time，a computer（Type－2 machine）receives a finite prefix（接頭辞）of an infinite sequence that represents a real number
－The input is thus discretized（離散化）
－A computer continues to output succeeding digits of output which is getting closer to the true value
－This is similar to the mechanism of learning
－Discretized approximation（in computing）
－Partial information of concepts（in learning）

Discretization and Learning

Partial information of the target

Approximation of the result

Computing

Learning
Data

Hypotheses

Real Number Computation as Learning

- Concept (learning target): a real number $x \in \mathbb{R}$
- Hypothesis: a finite sequence $H=a_{1} a_{2} \ldots a_{k}$
- A hypothesis H represents an interval $u(H)$
- Data: prefixes of $x=\rho\left(a_{1} a_{2} \ldots\right)$
- Correctness:
- Consistency: H is always consistent with x, i.e., $x \in u(H)$
- Instead of convergence in identification in the limit, we have effectivity:
For a sequence of hypotheses $w_{1}, w_{2}, w_{3}, \ldots$,
$u\left(w_{i}\right) \supseteq u\left(w_{i+1}\right)$ always holds

Summary of Real Number Computation in Machine Learning Framework

Target

Representation
Data
Algorithm
Correctness

Real number
Gray code/signed digit representation
Prefix (Discretized value, interval)
Depends on functions
Consistency \& Effectivity

Example: Binary Representation

- $\Sigma=\{0,1\}$
- Binary representation $\rho: \Sigma^{\omega} \rightarrow[0,1]:$

$$
\rho\left(a_{1} a_{2} \ldots\right)=\sum_{i=1}^{\infty} a_{i} \cdot 2^{-i}
$$

- Binary representation for finite sequence $u: \Sigma^{*} \rightarrow \mathcal{P}([0,1]):$

$$
u\left(a_{1} a_{2} \ldots a_{k}\right)=\left[\rho\left(a_{1} a_{2} \ldots a_{k} 000 \ldots\right), \rho\left(a_{1} a_{2} \ldots a_{k} 111 \ldots\right)\right]
$$

$$
=\left[\sum_{i=1}^{k} a_{i} \cdot 2^{-i}, \sum_{i=1}^{k} a_{i} \cdot 2^{-i}+2^{-k}\right]
$$

Binary Representation

$22 / 28$

Example: Signed Digit Representation

- $\Sigma=\{0,1, \overline{1}\}$
- Signed digit representation $\rho: \Sigma^{\omega} \rightarrow[0,1]$:

$$
\rho\left(a_{1} a_{2} \ldots\right)=\sum_{i=1}^{\infty} a_{i} \cdot 2^{-i}
$$

- Signed digit representation for finite sequence

$$
\begin{aligned}
& u: \Sigma^{*} \rightarrow \mathcal{P}([0,1]): \\
& u\left(a_{1} a_{2} \ldots a_{k}\right)=\left[\rho\left(a_{1} a_{2} \ldots a_{k} \overline{1} \overline{1} \overline{1} \ldots\right), \rho\left(a_{1} a_{2} \ldots a_{k} 111 \ldots\right)\right] \\
&=\left[\sum_{i=1}^{k} a_{i} \cdot 2^{-i}-2^{-k}, \sum_{i=1}^{k} a_{i} \cdot 2^{-i}+2^{-k}\right]
\end{aligned}
$$

Signed Digit Representation

Refinement

- Refinement of signed digit representation is simple:
(i) $w \xrightarrow{\rho} w 0$
(ii) $w \xrightarrow{\rho} w 1$
(iii) $w \xrightarrow{\rho} w \overline{1}$
- "Learning with refinement"
= "Real number computation"

Efficient Learning with Refinement

1. $i \leftarrow 1, S \leftarrow \varnothing, H \leftarrow T, Q \leftarrow \varnothing / / Q$ is a list of candidate hypotheses
2. repeat
3. $S \leftarrow S \cup\left\{\left(x_{i}, y_{i}\right)\right\}$
4. while H is not consistent with S
5. if $x \in u(H)$ for some $(x, 0) \in S$ then
6. \quad Append all $\rho(H)$ to the tail of Q
7. end if
8. $\quad H \leftarrow$ the first hypothesis in Q, and remove it from Q
9. end while
10. $H_{i} \leftarrow H$ and output H_{i}
11. $i \leftarrow i+1$
12. until forever

Conclusion

- Computing and learning have been studied in different fields
- However, if we consider computation over \mathbb{R}, there is a close connection between computing and learning
- This is still a developing field
- No textbook!
- Some interesting papers:
- de Brecht, M., Topological and Algebraic Aspects of Algorithmic Learning Theory, PhD thesis (2010)
- Sugiyama, M. and Hirowatari, E. and Tsuiki, H. and Yamamoto, A., Learning Figures with the Hausdorff Metric by Fractals-Towards Computable Binary Classification, Machine Learning (2012)

Take-Home Massages

1. Learning \simeq Computing on $\mathbb{R} \neq$ Computing on \mathbb{N}
2. Representation of objects is essential
3. Structure of hypothesis space is crucial for efficiency
4. We are learners in data mining
