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Today’s Outline

• Recap the main points of last week’s lecture

• Discretization on learning

• Real number computation (実数計算)

• Learning = computing = discretization?

• All slides are at:
http://mahito.info/materials.html
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Structurization of Hypothesis Space

• To search hypotheses,
(i) The structure of the hypothesis spaceH
(ii) An operator that enables to traverse the space

are indispensable

• The structured space is mathematically modeled
as a poset (partially ordered set;半順序集合)

• As an operator, we use refinement (精密化)
– For each hypothesis, a learner can “refine” it and

derive a set of one level-specific hypotheses
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Structurization of Hypothesis Space

No structure
in hypothesis space Poset with re�nement

Subset inclusion
relationships in
concept space
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Fatal Error Caused by Discretization

• Solve the system of equations [Schröder, 2003]

40157959.0 x + 67108865.0 y = 1
67108864.5 x + 112147127.0 y = 0

– We can solve by the well-known formula:

x =
b1a22 − b2a12

a11a22 − a21a12
, y =

b2a11 − b1a21

a11a22 − a21a12

• Computation by floating point arithmetic with double
precision variables (IEEE 754):
x = 112147127, y = −67108864.5

• Correct solution:
x = 224294254, y = −134217729 5/28



Treat Data as Intervals
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Geometric Point of View
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How to Compute Real Numbers?

• Consider computation of f (x) = 3 ⋅ x

• For example: f (1/3) = 3 ⋅ 1/3
• Since 1/3 = 0.33333 . . . , a computer should output
0.99999 . . . (or 1.00000 . . . )

• However, it cannot output any digit since:
– If an input is 0.333 . . . forever, the output is 0.999 . . .
– If an input is 0.333 . . . 34 at some point,

the output is 1.000 . . . 02

• Thus the computer cannot determine even the first digit
at any moment
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What is Problem in Real Number
Computation?

• The problem is caused by the representation of
real numbers (実数表現)

• Decimal representation (10進表現) lacks
redundancy (冗長性)
– We need more sequences that represent the same number

• Solution: signed digit representation (符号付き2進数)
– Use three symbols: 1, 0, and 1̄ (1̄means −1) and defined as:

ρ(a1a2 . . . ) = ∑∞
i=1a i ⋅ 2

−i

◦ Same as the binary representation if we use only 0 and 1
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Signed Digit Representation
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Gray Code

• Using signed digit representation, we can achieve
computation over reals in a natural sense

• Another interesting representation is Gray code (グレイコ
ード) by Frank Gray (1947) and Émile Baudot (1878)
– Originally, another binary encoding of natural numbers

◦ Important in applications of conversion between
analog and digital information [Knuth, 2005]

• Gray codes for natural numbers:
0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111
Gray 000 001 011 010 110 111 101 100
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Gray Code Embedding

• Gray code can be used for real number representation
– We use three symbols 0, 1, and ⊥

• The Gray code embedding (グレイコード埋め込み) is an
injection γG that maps x ∈ [0, 1] to an infinite sequence
p0p1p2 . . . , where
– p i ≔ 1 if 2−im − 2−(i+1) < x < 2−im + 2−(i+1) for an odd m,
– p i ≔ 0 if the same holds for an even m,
– p i ≔ ⊥ if x = 2−im − 2−(i+1) for some integer m

• Power of representations for real number computation:
Gray code = signed digit representation [Dusky, 2002]

> binary representation
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Gray Code on Reals
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Binary Representation

0 1

Po
si
tio

n

0
1
2
3
4

0.5 0.750.25

14/28



Binary Representation

0 1

Po
si
tio

n

0
1
2
3
4

0.5 0.750.1 0.2

00011...
00110...

14/28



Computation via Type-2 Machine

• Computation of real numbers is realized as conversion
between their representations (infinite sequences)

• Computation on infinite sequences in Σω is formulated
using Type-2 machine

Σω g //

ξ
��

Σω

ζ
��

X
f

// Y
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Type-2 Machine

Input tape (one way）

Work tapes

Output tape（one way）
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Discretization and Learning

• In finite time, a computer (Type-2 machine) receives
a finite prefix (接頭辞) of an infinite sequence
that represents a real number
– The input is thus discretized (離散化)

• A computer continues to output succeeding digits
of output which is getting closer to the true value
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Discretization and Learning

• In finite time, a computer (Type-2 machine) receives
a finite prefix (接頭辞) of an infinite sequence
that represents a real number
– The input is thus discretized (離散化)

• A computer continues to output succeeding digits
of output which is getting closer to the true value

• This is similar to themechanism of learning
– Discretized approximation (in computing)
– Partial information of concepts (in learning)
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Discretization and Learning
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Real Number Computation as Learning

• Concept (learning target): a real number x ∈ R

• Hypothesis: a finite sequence H = a1a2 . . . ak

– A hypothesis H represents an interval υ(H)
• Data: prefixes of x = ρ(a1a2 . . . )
• Correctness:

– Consistency: H is always consistent with x , i.e., x ∈ υ(H)
– Instead of convergence in identification in the limit,

we have effectivity:
For a sequence of hypothesesw1 ,w2 ,w3 , . . . ,
υ(w i ) ⊇ υ(w i+1) always holds
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Summary of Real Number Computation
in Machine Learning Framework

Target Real number

Representation Gray code/signed digit representation

Data Prefix (Discretized value, interval)

Algorithm Depends on functions

Correctness Consistency & Effectivity
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Example: Binary Representation

• Σ = {0, 1}
• Binary representation ρ ∶ Σω

→ [0, 1]:
ρ(a1a2 . . . ) = ∞

∑
i=1

a i ⋅ 2
−i

• Binary representation for finite sequence
υ ∶ Σ∗

→ P([0, 1]):
υ(a1a2 . . . ak) = [ ρ(a1a2 . . . ak000 . . . ), ρ(a1a2 . . . ak111 . . . )]

= [ k

∑
i=1

a i ⋅ 2
−i ,

k

∑
i=1

a i ⋅ 2
−i + 2−k]
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Example: Signed Digit Representation

• Σ = {0, 1, 1̄}
• Signed digit representation ρ ∶ Σω

→ [0, 1]:
ρ(a1a2 . . . ) = ∞

∑
i=1

a i ⋅ 2
−i

• Signed digit representation for finite sequence
υ ∶ Σ∗

→ P([0, 1]):
υ(a1a2 . . . ak) = [ ρ(a1a2 . . . ak 1̄1̄1̄ . . . ), ρ(a1a2 . . . ak111 . . . )]

= [ k

∑
i=1

a i ⋅ 2
−i − 2−k ,

k

∑
i=1

a i ⋅ 2
−i + 2−k]
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Signed Digit Representation
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Refinement

• Refinement of signed digit representation is simple:

(i) w
ρ
→ w0

(ii) w
ρ
→ w1

(iii) w
ρ
→ w1̄

• “Learning with refinement”
= “Real number computation”

25/28



Efficient Learning with Refinement

1. i ← 1, S ← ∅, H ← ⊤, Q ← ∅ // Q is a list of candidate hypotheses
2. repeat
3. S ← S ∪ {(x i , y i )}
4. while H is not consistent with S

5. if x ∈ υ(H) for some (x , 0) ∈ S then
6. Append all ρ(H) to the tail of Q
7. end if
8. H ← the first hypothesis in Q, and remove it from Q

9. end while
10. H i ← H and output H i

11. i ← i + 1

12. until forever 26/28



Conclusion

• Computing and learning have been studied
in different fields

• However, if we consider computation over R, there is a
close connection between computing and learning

• This is still a developing field
– No textbook!
– Some interesting papers:

◦ de Brecht, M., Topological and Algebraic Aspects of
Algorithmic Learning Theory, PhD thesis (2010)

◦ Sugiyama, M. and Hirowatari, E. and Tsuiki, H. and Yamamoto,
A., Learning Figures with the Hausdorff Metric by
Fractals—Towards Computable Binary Classification,
Machine Learning (2012) 27/28



Take-HomeMassages

1. Learning ≃ Computing on R /= Computing on N

2. Representation of objects is essential

3. Structure of hypothesis space is crucial for efficiency

4. We are learners in data mining
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