
Studies on Computational
Learning via Discretization

Mahito Sugiyama

Doctoral dissertation, 2012

Department of Intelligence Science and Technology
Graduate School of Informatics

Kyoto University

A doctoral dissertation

submitted in partial fulϐillment of the requirements
for the degree of Doctor of Informatics.

Department of Intelligence Science and Technology,
Graduate School of Informatics,
Kyoto University.

Typeset with
X ETEX, Version 3.1415926-2.3-0.9997.5 (TeX Live 2011),
XY-pic, Version 3.8.5.

Copyright © 2012 Mahito Sugiyama
All rights reserved.

Abstract

This thesis presents cutting-edge studies on computational learning. The key issue
throughout the thesis is amalgamation of two processes; discretization of contin-
uous objects and learning from such objects provided by data.

Machine learning, or data mining and knowledge discovery, has been rapidly
developed in recent years and is now becoming a huge topic in not only research
communities but also businesses and industries. Discretization is essential for
learning from continuous objects such as real-valued data, since every datum ob-
tained by observation in the real world must be discretized and converted from
analog (continuous) to digital (discrete) form to store in databases and manipu-
late on computers. However, most machine learning methods do not pay attention
to the process: they use digital data in actual applications whereas assume analog
data (usually real vectors) in theories. To bridge the gap, we cut into computational
aspects of learning from theory to practice through three parts in this thesis.

Part I addresses theoretical analysis, which forms a disciplined foundation of
the thesis. In particular, we analyze learning of ϔigures, nonempty compact sets in
Euclidean space, based on the Gold-style learningmodel aiming at a computational
basis for binary classiϐication of continuous data. We use fractals as a representa-
tion system, and reveal a learnability hierarchy under various learning criteria in
the track of traditional analysis of learnability in the Gold-style learning model. We
show a mathematical connection between machine learning and fractal geometry
by measuring the complexity of learning using the Hausdorff dimension and the
VC dimension. Moreover, we analyze computability aspects of learning of ϐigures
using the framework of Type-2 Theory of Effectivity (TTE).

Part II is a way from theory to practice. We start from designing a new mea-
sure in a computational manner, called coding divergence, which measures the dif-
ference between two sets of data, and go further by solving the typical machine
learning tasks: classiϐication and clustering. Speciϐically, we give two novel clus-
tering algorithms, COOL (COding Oriented cLustering) and BOOL (Binary cOding
Oriented cLustering). Experiments show that BOOL is faster than the K-means
algorithm, and about two to three orders of magnitude faster than two state-of-
the-art algorithms that can detect non-convex clusters of arbitrary shapes.

Part III treats more complex problems: semi-supervised and preference learn-
ing, by beneϐiting from Formal Concept Analysis (FCA). First we construct a SELF
(SEmi-supervised Learning via FCA) algorithm, which performs classiϐication and
label ranking of mixed-type data containing both discrete and continuous vari-
ables. Finally, we investigate a biological application; we challenge to ϐind ligand
candidates of receptors from databases by formalizing the problem as multi-label
classiϔication, and develop an algorithm LIFT (Ligand FInding via Formal ConcepT
Analysis) for the task. We experimentally show their competitive performance.

Acknowledgments

I am deeply grateful to all the people who have supported me along the way. First
of all, I would like to sincerely thank to my supervisor Prof. Akihiro Yamamoto,
who is my thesis committee chair. His comments and suggestions had inestimable
value for my study. I would also like to thank to the other committee members,
Prof. Tatsuya Akutsu and Prof. Toshiyuki Tanaka, for reviewing this thesis and for
their meticulous comments.

Special thanks to my co-authors Prof. Hideki Tsuiki and Prof. Eiju Hirowatari,
who have been greatly tolerant and supportive and gave insightful comments and
suggestions. I am also indebted to Mr. Kentaro Imajo, Mr. Keisuke Otaki, and Mr.
Tadashi Yoshioka, who are also my co-authors and colleagues in our laboratory.

My deepest appreciation goes to Prof. Shigeo Kobayashi who was my supervi-
sor during my Master’s course. It has been a unique chance for me to learn from
his biological experience and his never-ending passion of scientiϐic discovery.

I have had the support and encouragement of Prof. Takashi Washio, Prof. Shin-
ichi Minato, Dr. Yoshinobu Kawahara, and Dr. Matthew de Brecht. I would like to
express my gratitude to Dr. Marco Cuturi for his constant support in the English
language throughout this thesis.

I would like to warmly thank all of the people who helped or encouraged me in
various ways during my doctoral course: Dr. Koichiro Doi, Dr. Ryo Yoshinaka, and
my colleagues in our laboratory.

Apart from individuals, I gratefully appreciate the ϐinancial support of the Japan
Society for the Promotion of Science (JSPS) and Japan Student Services Organiza-
tion that made it possible to complete my thesis.

Finally, I would like to thank to my family: my mother Hiroko, my father-in-
law Masayuki Fujidai, and my wife Yumiko. In particular, Yumiko’s support was
indispensable to complete my doctoral course.

My father and my mother-in-law passed away during my doctoral course. I
would like to devote this thesis to them.

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Main Contributions . 4

I Theory 7

2 Learning Figures as Computable Classiϐication 8
2.1 Related Work . 12
2.2 Formalization of Learning . 13
2.3 Exact Learning of Figures . 21

2.3.1 Explanatory Learning . 21
2.3.2 Consistent Learning . 24
2.3.3 Reliable and Refutable Learning 25

2.4 Effective Learning of Figures . 28
2.5 Evaluation of Learning Using Dimensions 31

2.5.1 Preliminaries for Dimensions 31
2.5.2 Measuring the Complexity of Learning with Dimensions . . 33
2.5.3 Learning the Box-Counting Dimension Effectively 35

2.6 Computational Interpretation of Learning 36
2.6.1 Preliminaries for Type-2 Theory of Effectivity 36
2.6.2 Computability and Learnability of Figures 38

2.7 Summary . 41

II From Theory to Practice 43

3 Coding Divergence 44
3.1 Related Work . 46
3.2 Mathematical Background . 47

3.2.1 The Cantor Space . 47
3.2.2 Embedding the Euclidean Space into the Cantor Space . . . 47

3.3 Coding Divergence . 49
3.3.1 Deϐinition and Properties . 49
3.3.2 Classiϐication Using Coding Divergence 51
3.3.3 Learning of Coding Divergence 51

3.4 Experiments . 53

iv CONTENTS

3.4.1 Methods . 53
3.4.2 Results and Discussions . 55

3.5 Summary . 55
3.6 Outlook: Data Stream Classiϐication on Trees 57

3.6.1 CODE approach . 57
3.6.2 Experiments . 58

4 Minimum Code Length and Gray Code for Clustering 62
4.1 Minimum Code Length . 65
4.2 Minimizing MCL and Clustering . 66

4.2.1 Problem Formulation . 66
4.2.2 COOL Algorithm . 66

4.3 G-COOL: COOL with Gray Code . 68
4.3.1 Gray Code Embedding . 68
4.3.2 Theoretical Analysis of G-COOL 69

4.4 Experiments . 71
4.4.1 Methods . 71
4.4.2 Results and Discussion . 73

4.5 Summary . 75

5 Clustering Using Binary Discretization 76
5.1 Clustering Strategy . 77

5.1.1 Formulation of Databases and Clustering 78
5.1.2 Naïve BOOL . 79
5.1.3 Relationship between BOOL and DBSCAN 81

5.2 Speeding Up of Clustering through Sorting 82
5.3 Experiments . 86

5.3.1 Methods . 86
5.3.2 Results and Discussion . 88

5.4 Related Work . 90
5.5 Summary . 94

III With Formal Concept Analysis 95

6 Semi-supervised Classiϐication and Ranking 96
6.1 Related Work . 97
6.2 The SELF Algorithm . 99

6.2.1 Data Preprocessing . 99
6.2.2 Clustering and Making Lattices by FCA 102
6.2.3 Learning Classiϐication Rules 103
6.2.4 Classiϐication . 107

6.3 Experiments . 108
6.3.1 Methods . 108
6.3.2 Results . 110
6.3.3 Discussion . 111

6.4 Summary . 118

7 Ligand Finding by Multi-label Classiϐication 119
7.1 The LIFT Algorithm . 121

CONTENTS v

7.1.1 Multi-label Classiϐication and Ranking 123
7.2 Experiments . 129

7.2.1 Methods . 129
7.2.2 Results and Discussion . 130

7.3 Summary . 132

8 Conclusion 133

A Mathematical Background 136
A.1 Sets and Functions . 136
A.2 Topology and Metric Space . 137

Symbols 140

Bibliography 144

Publications by the Author 157

Index 159

List of Figures

1.1 Measurement of cell by microscope 2
1.2 Binary encoding of real numbers in [0, 1] 3

2.1 Framework of learning ϐigures . 11
2.2 Generation of the Sierpiński triangle 16
2.3 Learnability hierarchy . 21
2.4 Positive and negative examples for the Sierpiński triangle 34
2.5 The commutative diagram representingFĎČEĝ-Iēċ- andFĎČEċEĝ-Iēċ-

learning . 40

3.1 Two examples of computing the binary-coding divergence 46
3.2 Tree representation of the Cantor space over Σ = {0, 1} 48
3.3 The (one-dimensional) binary embedding 𝜑ଶ 49
3.4 Experimental results of accuracy for real data 56
3.5 Examples of calculating similarities 58
3.6 Experimental results for synthetic data 61
3.7 Experimental results for real data . 61

4.1 Examples of computing MCL with binary and Gray code embedding 63
4.2 Gray code embedding 𝜑ୋ . 69
4.3 Examples of level-1 and 2 partitions with binary and Gray code em-

bedding. 70
4.4 Representative clustering results . 71
4.5 Experimental results for synthetic data 72
4.6 Experimental results for speed and quality for synthetic data 73
4.7 Experimental results for real data . 74

5.1 Example of clustering using BOOL . 77
5.2 Illustration of 𝑙-neighborhood . 81
5.3 Illustrative example of clustering process by speeded-up BOOL . . 85
5.4 Clustering speed and quality for randomly generated synthetic data 87
5.5 Clustering speed and quality with respect to distance parameter 𝑙

and noise parameter𝑁 . 88
5.6 Experimental results for synthetic databases DS1 - DS4 91
5.7 Experimental results (contour maps) for four natural images 92
5.8 Experimental results for geospatial satellite images 93

6.1 Flowchart of SELF . 98
6.2 The bipartite graph corresponding to the context in Example 6.5 . 103
6.3 Closed set lattice (concept lattice) . 104

LIST OF FIGURES vii

6.4 Closed set lattices (concept lattices) at discretization levels 1 and 2 106
6.5 Experimental results of accuracy with varying the labeled data size 112
6.6 Experimental results of accuracy with varying the feature size . . . 113
6.7 Experimental results of accuracy with varying the feature size . . . 114
6.8 Experimental results of correctness and completeness with varying

the labeled data size . 115
6.9 Experimental results of correctness and completeness with varying

the feature size . 116
6.10 Experimental results of correctness and completeness with varying

the feature size . 117

7.1 Ligand-gated ion channel . 120
7.2 Concept lattice constructed from the context in Example 7.1 122
7.3 Concept lattice from the context in Example 7.2 with its geometric

interpretation . 123
7.4 Concept lattices constructed from contexts in Example 7.8 128
7.5 Experimental results of accuracy for each receptor family 131

List of Tables

1.1 Contributions . 6

2.1 Relationship between the conditions for each ϐinite sequence and
the standard notation of binary classiϐication 20

4.1 Experimental results of running time and MCL for real data 75

5.1 Database 𝜏, and discretized databases Δଵ(𝜏) and Δଶ(𝜏) 79
5.2 Database 𝜏 and sorted database 𝑆ఙ(𝜏) 84
5.3 Experimental results of running time 89
5.4 Experimental results for UCI data . 90

6.1 Statistics for UCI data . 109

7.1 Statistics for families of receptors . 130

List of Algorithms & Procedures

2.1 Classiϐier ℎ of hypothesis𝐻 . 18
2.2 Learning procedure that FĎČEĝ-Iēċ-learns 𝜅(ℋ) 22
2.3 Learning procedure that FĎČEċEĝ-Iēċ-learns 𝜅(ℋ) 31

3.1 Learner 𝜓 that learns 𝐶ఉ(𝑋, 𝑌) . 52
3.2 Learning algorithm M that learns 𝐶ఉ(𝑋, 𝑌) 54
3.3 Construction of tree and calculation of the similarity 59
3.4 CODE procedure . 60

4.1 COOL algorithm . 67

5.1 Naïve BOOL . 78
5.2 Speeded-up BOOL . 83

6.1 Data preprocessing for discrete variables 100
6.2 Data preprocessing for continuous variables 101
6.3 SELF algorithm . 105
6.4 Classiϐication . 107

7.1 LIFT algorithm . 127

1

INTRODUCTION

LĊę ĚĘ ĎĒĆČĎēĊ measuring the size of a cell. One of the most straightforward
ways is to use a microscope equipped with a pair of micrometers; an ocular micrometer

micrometer and a stage micrometer. The ocular micrometer is a glass disk with a
ruled scale (like a ruler) located at a microscope eyepiece, which is used to mea-
sure the size of magniϐied objects. The stage micrometer is used for calibration,
because the actual length of the marks on the scale of the ocular micrometer is
determined by the degree of magniϐication. Here we consider only four objectives
whose magniϐication is 1×, 2×, 4×, and 8×, for simplicity, and do not consider
magniϐication of the eyepiece.

Figure 1.1 shows an example of measurement of a cell. Let the length of the cell
be 𝑥 and marks represent 1 𝜇m in length without any magniϐication. We obtain

2 𝜇m ≤ 𝑥 ≤ 3 𝜇m

if we use the objective with 1×magniϐication. We call the width 3 − 2 = 1 𝜇m the
error of measurement. This is a very rough value, but the result can be reϔined, that error
is, the error can be reduced if we use a high-power objective. Then, we have

2 𝜇m ≤ 𝑥 ≤ 2.5 𝜇m (2×),
2.25 𝜇m ≤ 𝑥 ≤ 2.5 𝜇m (4×), and
2.25 𝜇m ≤ 𝑥 ≤ 2.375 𝜇m (8×),

and errors are 0.5 𝜇m, 0.25 𝜇m, and 0.125 𝜇m, respectively. Thus we can see that
every datum in the real world obtained by a microscope has a numerical error datum
which depends on the degree of magniϐication, and if we magnify 𝑘×, the error
becomes 𝑘ିଵ 𝜇m. This is not only the case for a microscope and is fundamental for
every measurement: Any datum obtained by an experimental instrument, which
is used for scientiϐic activity such as proposing and testing a working hypothesis,
must have some numerical error (cf. Baird, 1994).

In the above discussion, we (implicitly) used a real number to represent the real number
true length 𝑥 of the cell, which is the standard way to treat objects in the real world
mathematically. However, we cannot directly treat such real numbers on a com-
puter— an inϐinite sequence is needed for exact encoding of a real number without

2 INTRODUCTION

Figure 1.1 | Measurement of a cell by
a microscope.

1×
2×

4×

8×

Magni�cationScale of ocular micrometer

Magni�ed cells

any numerical error. This is why
continuum

both of the cardinalities of the set of real numbers
ℝ and the set of inϐinite sequences Σఠ are the continuum, whereas that of the set of
ϐinite sequences Σ∗ is the same as ℵ଴, the cardinality of the set of natural numbers
ℕ. Therefore, we cannot escape from discretization

discretization
of real numbers to treat them

on a computer in ϐinite time.
In a typical computer, numbers are represented through the binary encoding

scheme. For example, numbers 1, 2, 3, 4, 5, 6, 7, and 8 are represented asbinary encoding

𝟶𝟶𝟶, 𝟶𝟶𝟷, 𝟶𝟷𝟶, 𝟶𝟷𝟷, 𝟷𝟶𝟶, 𝟷𝟶𝟷, 𝟷𝟷𝟶, 𝟷𝟷𝟷,

respectively and, in the following, we focus on real numbers in [0, 1] (the closed
interval from 0 to 1) to go into the “real” world more deeply.

Mathematically, the binary encoding, or binary representation, of real numbersbinary representation
in [0, 1] is realized as a surjective function 𝜌 from Σఠ toℝwith Σ = {𝟶, 𝟷} such that

𝜌(𝑝) =෍𝑝௜ ⋅ 2
ି(௜ାଵ)

for an inϐinite binary sequence 𝑝 = 𝑝଴𝑝ଵ𝑝ଶ… (Figure 1.2). For instance,

𝜌(𝟷𝟶𝟶𝟶…) = 0.5, 𝜌(𝟶𝟷𝟶𝟶…) = 0.25, and 𝜌(𝟷𝟷𝟷𝟷…) = 1.

Thus, for an unknown real number 𝑥 such that 𝑥 = 𝜌(𝑝), if we observe the ϐirst bit
𝑝଴, we can determine to

𝑝଴ ⋅ 2
ିଵ ≤ 𝑥 ≤ 𝑝଴ ⋅ 2

ିଵ + 2ିଵ.

This means that this datum has an error 2ିଵ = 0.5, which is the width of the in-
terval. In the same way, if we observe the second, the third, and the fourth bits 𝑝ଵ,
𝑝ଶ, and 𝑝ଷ, we have

ଵ

෍
௜ୀ଴

𝑝௜ ⋅ 2
ି(௜ାଵ) ≤ 𝑥 ≤

ଵ

෍
௜ୀ଴

𝑝௜ ⋅ 2
ି(௜ାଵ) + 2ିଶ (for 𝑝଴𝑝ଵ) ,

ଶ

෍
௜ୀ଴

𝑝௜ ⋅ 2
ି(௜ାଵ) ≤ 𝑥 ≤

ଶ

෍
௜ୀ଴

𝑝௜ ⋅ 2
ି(௜ାଵ) + 2ିଷ (for 𝑝଴𝑝ଵ𝑝ଶ) , and

ଷ

෍
௜ୀ଴

𝑝௜ ⋅ 2
ି(௜ାଵ) ≤ 𝑥 ≤

ଷ

෍
௜ୀ଴

𝑝௜ ⋅ 2
ି(௜ାଵ) + 2ିସ (for 𝑝଴𝑝ଵ𝑝ଶ𝑝ଷ) .

INTRODUCTION 3

0 1ρ(01001...) = 0.3

Po
si

tio
n

0

1

2

3

4

0.5

Figure 1.2 | Binary encoding of real
numbers in [0, 1]. The position i is 1 if
it is on the line, and 0 otherwise.

Thus a preϔix, a truncated ϔinite binary sequence, has a partial information about theprefix
true value 𝑥, which corresponds to a measured datum by a microscope. The error
becomes 2ି(௞ାଵ) when we obtain the preϐix whose length is 𝑘. Thus observing
the successive bit corresponds to magnifying the object to double. In this way, we
can reduce the error but, the important point is, we cannot know the exact true
value of the object. In essentials, only such an observable information, speciϐically,
a preϐix of an inϐinite binary sequence encoding a real number, can be used on a
computer, and all computational processings must be based on discrete structure
manipulation on such approximate values.

Recently, computation for real numbers has been theoretically analyzed in the
area of computable analysis (Weihrauch, 2000), where the framework of Type-2 Theory of Effectivity, TTEType-2
Theory of Effectivity (TTE) has been introduced based on a Type-2 machine Type-2 machine, which
is an extended mathematical model of a Turing machine Turing machine. This framework treats
computation between inϐinite sequences; i.e., treats manipulation for real num-
bers through their representations (inϐinite sequences). The key to realization of
real number computation is to guarantee the computation between streams as fol- stream
lows: when a computer reads longer and longer preϐixes of the input sequence, it
produces longer and longer preϐixes of the resulting sequence. Such procedure is
called effective computing. effective computing

Here we go to the central topic of the thesis: machine learning, which “is a sci-
entiϐic discipline concerned with the design and development of algorithms that
allow computers to evolve behaviors based on empirical data”¹. Machine learning,
including data mining and knowledge discovery, has been rapidly developed in re-
cent years and is now becoming a huge topic in not only research communities but
also businesses and industries.

Since the goal is to learn from empirical data obtained in the real world, basi-
cally, discretization lies in any process in machine learning for continuous objects.
However, most machine learning methods do not pay attention to discretization
as a principle for computation of real numbers. Although there are several dis-
cretization techniques (Elomaa and Rousu, 2003; Fayyad and Irani, 1993; Fried-
man et al., 1998; Gama and Pinto, 2006; Kontkanen et al., 1997; Lin et al., 2003; Liu
et al., 2002; Skubacz and Hollmén, 2000), they treat discretization as just the data
preprocessing for improving accuracy or efϐiciency, and the process discretization
itself is not considered from computational point of view. Now, the mainstream
in machine learning is an approach based on statistical data analysis techniques,
so-called statistical machine learning, and they also (implicitly) use digital data in
actual applications on computers whereas assume analog data (usually vectors of

¹Reprinted from Wikipedia (http://en.wikipedia.org/wiki/Machine_learning)

http://en.wikipedia.org/wiki/Machine_learning

4 INTRODUCTION

real numbers) in theory. For example, methods originated from the perceptron
are based on the idea of regulating analog wiring (Rosenblatt, 1958), hence they
take no notice of discretization.

This gap is the motivation throughout this thesis. We cut into computational
aspects of learning from theory to practice to bridge the gap. Roughly speaking,
we build an “analog-to-digital (A/D) converter” into machine learning processes.

1.1 Main Contributions

This thesis consists of three parts. We list the main contributions for each part in
the following with referring the publications by the author. We also summarize our
contributions in Table 1.1 by categorizing them into learning types. See pp. 157 –
158 for the list of publications.

Part I: Theory

All results presented in this part have been published in [P1,P2].

Chapter 2: Learning Figures as Computable Classiϐication

• We formalize learning of ϐigures using fractals based on the Gold-style learn-
ing model towards fully computable binary classiϐication (Section 2.2). We
construct a representation system for learning using self-similar sets based
on the binary representation of real numbers, and show desirable properties
of it (Lemma 2.2, Lemma 2.3, and Lemma 2.4).

• We construct the learnability hierarchy under various learning criteria, sum-
marized in Figure 2.3 (Section 2.3 and 2.4). We introduce four criteria for
learning: explanatory learning (Subsection 2.3.1), consistent learning (Sub-
section 2.3.2), reliable and refutable learning (Subsection 2.3.3), and effective
learning (Section 2.4).

• We show a mathematical connection between learning and fractal geometry
by measuring the complexity of learning using the Hausdorff dimension and
the VC dimension (Section 2.5). Speciϐically, we give the lower bound to the
number of positive examples using the dimensions.

• We also show a connection between computability of ϐigures and learnability
of ϐigures discussed in this chapter using TTE (Section 2.6). Learning can be
viewed as computable realization of the identity from the set of ϐigures to the
same set equipped with the ϐiner topology.

Part II: From Theory to Practice

All results presented in this part have been published in [B1,P3,P4,P6,P7,P8]. Chap-
ter 3 is based on [B1,P3,P7], Chapter 4 on [P4,P6], and Chapter 5 on [P8].

Chapter 3: Coding Divergence

1.1 MAIN CONTRIBUTIONS 5

• We propose a measure of the difference between two sets of real-valued data,
called codingdivergence, to computationally unify two processes of discretiza-
tion and learning (Deϐinition 3.5).

• We construct a classiϐier using the divergence (Subsection 3.3.2), and experi-
mentally illustrate its robust performance (Section 3.4).

Chapter 4: Minimum Code Length and Gray Code for Clustering

• We design a measure, called the Minimum Code Length (MCL), that can score
the quality of a given clustering result under a ϔixed encoding scheme (Deϐini-
tion 4.1).

• We propose a general strategy to translate any encoding method into a cluster
algorithm, called COOL (COding-Oriented cLustering) (Section 4.2). COOL has
a low computational cost since it scales linearly with the data set size.

• We consider the Gray Code as the encoding scheme to present G-COOL (Sec-
tion 4.3). G-COOL can ϐind clusters of arbitrary shapes and remove noise.

• G-COOL is theoretically shown to achieve internal cohesion and external iso-
lation and is experimentally shown to work well for both synthetic and real
datasets (Section 4.4).

Chapter 5: Clustering Using Binary Discretization

• We present a new clustering algorithm, called BOOL (Binary cOding Oriented
cLustering), for multivariate data using binary discretization (Section 5.1, 5.2).
It can detect arbitrarily shaped clusters and is noise tolerant.

• Experiments show that BOOL is faster than theK-means algorithm, and about
two to three orders of magnitude faster than two state-of-the-art algorithms
that can detect non-convex clusters of arbitrary shapes (Section 5.3).

• We also show the robustness of BOOL to changes in parameters, whereas most
algorithms for arbitrarily shaped clusters are known to be overly sensitive to
such changes (Section 5.3).

Part III: With Formal Concept Analysis

All results presented in this part have been published in [J1,J2,P5,C1]. Chapter 6 is
based on [J1,P5] and Chapter 7 on [J2,C1].

Chapter 6: Semi-supervised Classiϐication and Ranking

• We present a new semi-supervised learning algorithm, called SELF (SEmi-
supervised Learning via FCA), which performs multiclass classiϐication and
label ranking ofmixed-type data containing both discrete and continuous vari-
ables (Section 6.2). SELF uses closed set lattices, which have been recently
used for frequent pattern mining within the framework of the data analysis
technique of Formal Concept Analysis (FCA).

• SELF canweight each classiϐication rule using the lattice, which gives a partial
order of preference over class labels (Section 6.2).

• We experimentally demonstrate competitive performance of SELF in classiϐi-
cation and ranking compared to other learning algorithms (Section 6.3).

6 INTRODUCTION

Table 1.1 | Contributions.

Supervised Learning

Chapter 2 Theoretical Analysis of Learning Figures
LLLL 2009 [P1], ALT 2010 [P2]

Chapter 3 Coding Divergence: Measuring the Similarity between Two Sets
Book [B1], ACML 2010 [P3], ALSIP 2011 [P7]

Unsupervised Learning

Chapter 4 (G-)COOL: Clustering with the MCL and the Gray Code
LLLL 2011 [P4], ECML PKDD 2011 [P6]

Chapter 5 BOOL: Clustering Using Binary Discretization
ICDM 2011 [P8]

Semi-supervised Learning

Chapter 6 SELF: Semi-supervised Learning via FCA
ICCS 2011 [P5], IDA [J1]

Chapter 7 LIFT: Ligand Finding via FCA
ILP 2011 [C1], IPSJ TOM [J2]

Chapter 7: Ligand Finding by Multi-label Classiϐication

• We mathematically model the problem of ligand ϐinding, which is a crucial
problem in biology and biochemistry, as multi-label classiϔication.

• We develop a new algorithm LIFT (Ligand FInding via Formal ConcepT Anal-
ysis) for multi-label classiϐication, which can treat ligand data in databases in
the semi-supervised manner.

• We experimentally show that LIFT effectively solves our task compared to
other machine learning algorithms using real data of ligands and receptors
in the IUPHAR database.

Part I

Theory

“The symbol is deϐined as a set of points in this square, viz.
the set occupied by printer’s ink.”

— Alan Mathison Turing, On Computable Numbers, with the Application to the
Entscheidungsproblem

2

LEARNING FIGURES AS
COMPUTABLE CLASSIFICATION

DĎĘĈėĊęĎğĆęĎĔē is a fundamental process in machine learning from analog data.discretization
For example, Fourier analysis is one of the most essential signal processing

methods and its discrete version, discrete Fourier analysis, is used for learning or
recognition on a computer from continuous signals. However, in the method, only
the direction of the time axis is discretized, so each data point is not purely dis-
cretized. That is to say, continuous (electrical) waves are essentially treated as
ϐinite/inϐinite sequences of real numbers, hence each value is still continuous (ana-
log). The gap between analog and digital data therefore remains.

This problem appears all over machine learning from observed multivariate
data as mentioned in Introduction. The reason is that an inϐinite sequence is needed
to encode a real vector exactly without any numerical error, since the cardinality
of the set of real numbers, which is the same as that of inϐinite sequences, is much
larger than that of the set of ϐinite sequences. Thus to treat each data point on
a computer, it has to be discretized and considered as an approximate value with
some numerical error. However, to date, most machine learning algorithms ig-
nore the gap between the original value and its discretized representation. This
gap could result in some unexpected numerical errors¹. Since now machine learn-
ing algorithms can be applied to massive datasets, it is urgent to give a theoreti-
cal foundation for learning, such as classiϐication, regression, and clustering, from
multivariate data, in a fully computational manner to guarantee the soundness of
the results of learning.

In the ϐield of computational learning theory, the Valiant-style learning modelValiant-style learning model
(also called PAC, Probably Approximately Correct, learning model), proposed by
Valiant (1984), is used for theoretical analysis of machine learning algorithms. In
this model, we can analyze the robustness of a learning algorithm in the face of
noise or inaccurate data and the complexity of learning with respect to the rate
of convergence or the size of the input using the concept of probability. Blumer
et al. (1989) and Ehrenfeucht et al. (1989) provided the crucial conditions for

¹Müller (2001) and Schröder (2002b) give some interesting examples in the study of computation
for real numbers.

LEARNING FIGURES AS COMPUTABLE CLASSIFICATION 9

learnability, that is, the lower and upper bounds for the sample size, using the VC
(Vapnik-Chervonenkis) dimension (Vapnik and Chervonenkis, 1971). These results VC dimension
can be applied to targets for continuous values, e.g., the learning of neural net-
works (Baum and Haussler, 1989). However, this learning model does not ϐit to
discrete and computational analysis of machine learning. We cannot know which
class of continuous objects is exactly learnable and what kind of data are needed to
learn from a ϐinite expression of discretized multivariate data. Although Valiant-
style learning from axis-parallel rectangles have already been investigated by Long
and Tan (1998), which can be viewed as a variant of learning from multivariate
data with numerical error, they are not applicable in the study since our goal is to
investigate computational learning focusing on a common ground between “learn-
ing” and “computation” of real numbers based on the behavior of Turing machine
without any probability distribution, and we need to distinguish abstract mathe-
matical objects such as real numbers and their concrete representations, or codes,
on a computer.

Instead, in this chapter we use the Gold-style learningmodel (also called identi- Gold-style learning model
ϔication in the limit), which is originally designed for learning of recursive functions
(Gold, 1965) and languages (Gold, 1967). In the model, a learning machine is as-
sumed to be a procedure, i.e., a Turing machine (Turing, 1937) which never halts,
that receives training data from time to time, and outputs representations (hy-
potheses) of the target from time to time. All data are usually assumed to be given
in time. Starting from this learning model, learnability of classes of discrete ob-
jects, such as languages and recursive functions, has been analyzed in detail under
various learning criteria (Jain et al., 1999b). However, analysis of learning for con-
tinuous objects, such as classiϐication, regression, and clustering for multivariate
data, with the Gold-style learning model is still under development, despite such
settings being typical in modern machine learning. To the best of our knowledge,
the only line of studies by Hirowatari and Arikawa (1997); Apsītis et al. (1999);
Hirowatari and Arikawa (2001); Hirowatari et al. (2003, 2005, 2006) devoted to
learning of real-valued functions, where they addressed the analysis of learnable
classes of real-valued functions using computable representations of real num-
bers. We therefore need a new theoretical and computational framework for mod-
ern machine learning based on the Gold-style learning model with discretization
of numerical data.

In this chapter we consider the problem of binary classiϔication for multivari- binary classification
ate data, which is one of the most fundamental problems in machine learning and
pattern recognition. In this task, a training dataset consists of a set of pairs

൛ (𝑥ଵ, 𝑦ଵ), (𝑥ଶ, 𝑦ଶ), … , (𝑥௡ , 𝑦௡) ൟ ,

where 𝑥௜ ∈ ℝௗ is a feature vector, 𝑦௜ ∈ {0, 1} is a label, and the 𝑑-dimensional feature vector
Euclidean space ℝௗ is a feature space. The goal is to learn a classiϔier from the classifier
given training dataset, that is, to ϐind a mapping ℎ ∶ ℝௗ → {0, 1} such that, for all
𝑥 ∈ ℝௗ , ℎ(𝑥) is expected to be the same as the true label of 𝑥. In other words, such
a classiϐier ℎ is the characteristic function of a subset characteristic function

𝐿 = ቄ 𝑥 ∈ ℝௗ ቚ ℎ(𝑥) = 1 ቅ

of ℝௗ , which has to be similar to the true set
𝐾 = ቄ 𝑥 ∈ ℝௗ ቚ the true label of 𝑥 is 1 ቅ

10 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

as far as possible. Throughout the chapter, we assume that each feature is nor-
malized by some data preprocessing such as min-max normalization for simplic-
ity, that is, the feature space is the unit interval (cube) ℐௗ = [0, 1] × … × [0, 1] in
the 𝑑-dimensional Euclidean space ℝௗ . In many realistic scenarios, each target 𝐾
is a closed and bounded subset of ℐௗ , i.e., a nonempty compact subset of ℐௗ , called
a ϔigure. Thus here we address the problem of binary classiϐication by treating itfigure
as “learning of ϐigures”.

In this machine learning process, we implicitly treat any feature vector through
its representation, or code on a computer, that is, each feature vector 𝑥 ∈ ℐௗ isrepresentation
represented by a sequence 𝑝 over some alphabet Σ using an encoding scheme 𝜌.
Here such a surjective mapping 𝜌 is called a representation and should map the
set of “inϐinite” sequences Σఠ to ℐௗ since there is no one-to-one correspondence
between ϐinite sequences and real numbers (or real vectors). In this chapter, we
use the binary representation 𝜌 ∶ Σఠ → [0, 1] with Σ = {𝟶, 𝟷}, which is deϐined bybinary representation

𝜌(𝑝) ≔෍𝑝௜ ⋅ 2
ି(௜ାଵ)

for an inϐinite sequence 𝑝 = 𝑝଴𝑝ଵ𝑝ଶ… . For example,

𝜌(𝟶𝟷𝟶𝟶…) = 0.25, 𝜌(𝟷𝟶𝟶𝟶…) = 0.5, and 𝜌(𝟶𝟷𝟷𝟷…) = 0.5.

However, we cannot treat inϐinite sequences on a computer in ϐinite time and, in-
stead, we have to use discretized values, i.e., truncated ϔinite sequences in any actual
machine learning process. Thus in learning of a classiϐier ℎ for the target ϐigure𝐾,
we cannot use an exact data point 𝑥 ∈ 𝐾 but have to use a discretized ϐinite se-
quence𝑤 ∈ Σ∗ which tells us that 𝑥 takes one of the values in the set {𝜌(𝑝) ∣ 𝑤 ⊏ 𝑝}
(𝑤 ⊏ 𝑝 means that 𝑤 is a preϔix of 𝑝). For instance, if 𝑤 = 𝟶𝟷, then 𝑥 should be in
the interval [0.25, 0.5]. For a ϐinite sequence𝑤 ∈ Σ∗, we deϐine

𝜌(𝑤) ≔ ൛ 𝜌(𝑝) ห 𝑤 ⊏ 𝑝 with 𝑝 ∈ Σఠ ൟ

using the same symbol 𝜌. From a geometric point of view, 𝜌(𝑤) means a hyper
rectangle whose sides are parallel to the axes in the space ℐௗ . For example, for the
binary representation 𝜌, we have

𝜌(𝟶) = [0, 0.5], 𝜌(𝟷) = [0.5, 1], 𝜌(𝟶𝟷) = [0.25, 0.5],

and so on. Therefore in the actual learning process, while a target set 𝐾 and each
point 𝑥 ∈ 𝐾 exist mathematically, a learning machine can only treat ϐinite se-
quences as training data.

Here the problem of binary classiϐication is stated in a computational manner
as follows: given a training dataset

൛ (𝑤ଵ, 𝑦ଵ), (𝑤ଶ, 𝑦ଶ), … , (𝑤௡ , 𝑦௡) ൟ

(𝑤௜ ∈ Σ∗ for each 𝑖 ∈ {1, 2, … , 𝑛}), where

𝑦௜ = ൝1 if 𝜌(𝑤௜) ∩ 𝐾 ≠ ∅ for a target ϐigure 𝐾 ⊆ ℐ௞
0 otherwise,

learn a classiϐier ℎ ∶ Σ∗ → {0, 1} for which ℎ(𝑤) should be the same as the true
label of 𝑤. Each training datum (𝑤௜ , 𝑦௜) is called a positive example if 𝑦௜ = 1 and apositive example

LEARNING FIGURES AS COMPUTABLE CLASSIFICATION 11

Positive examples

Negative examples

Target �gure

Learner

Self-similar set represented
by hypothesis

Figure 2.1 | Framework of learning
figures.

negative example negative exampleif 𝑦௜ = 0.
Assume that a ϐigure 𝐾 is represented by a set 𝑃 of inϐinite sequences, i.e.,

{𝜌(𝑝) ∣ 𝑝 ∈ 𝑃} = 𝐾, using the binary representation 𝜌. Then learning the ϐigure is
different from learning the well-known preϔix closed set Pref(𝑃), deϐined as prefix closed set

Pref(𝑃) ≔ ൛ 𝑤 ∈ Σ∗ ห 𝑤 ⊏ 𝑝 for some 𝑝 ∈ 𝑃 ൟ ,

since generally Pref(𝑃) ≠ {𝑤 ∈ Σ∗ ∣ 𝜌(𝑤) ∩ 𝐾 ≠ ∅ } holds. For example, if 𝑃 =
{ 𝑝 ∈ Σఠ ∣ 𝟷 ⊏ 𝑝 }, the corresponding ϐigure 𝐾 is the interval [0.5, 1]. The inϐinite
sequence 𝟶𝟷𝟷𝟷… is a positive example since 𝜌(𝟶𝟷𝟷𝟷…) = 0.5 and 𝜌(𝟶𝟷𝟷𝟷…) ∩
𝐾 ≠ ∅, but it is not contained in Pref(𝑃). Solving this mismatch between objects of
learning and their representations is one of the challenging problems of learning
continuous objects based on their representation in a computational manner.

For ϐinite expression of classiϐiers, we use self-similar sets known as a family self-similar set
of fractals (Mandelbrot, 1982) to exploit their simplicity and the power of expres- fractals
sion theoretically provided by the ϐield of fractal geometry. Speciϐically, we can
approximate any ϐigure by some self-similar set arbitrarily closely (derived from
the Collage Theorem given by Falconer (2003)) and can compute it by a simple
recursive algorithm, called an IFS (Iterated Function System) (Barnsley, 1993; Fal- IFS (Iterated Function System)
coner, 2003). This approach can be viewed as the analog of the discrete Fourier
analysis, where FFT (Fast Fourier Transformation) is used as the fundamental re-
cursive algorithm. Moreover, in the process of sampling from analog data in dis-
crete Fourier analysis, scalability is a desirable property. It requires that when the
sample resolution increases, the accuracy of the result is monotonically reϐined.
We formalize this property as effective learning of ϐigures, which is inspired by ef-
fective computing in the framework of Type-2 Theory of Effectivity (TTE) studied
in computable analysis (Schröder, 2002a; Weihrauch, 2000). This model guaran-
tees that as a computer reads more and more precise information of the input, it
produces more and more accurate approximations of the result. Here we interpret
this model from computation to learning, where if a learner (learning machine) re-
ceives more and more accurate training data, it learns better and better classiϐiers
(self-similar sets) approximating the target ϐigure.

To summarize, our framework of learning ϐigures (shown in Figure 2.1) is as
follows: Positive examples are axis-parallel rectangles intersecting the target ϐig-
ure, and negative examples are those disjoint with the target. A learner reads a
presentation (inϐinite sequence of examples), and generates hypotheses. A hy-
pothesis is a ϐinite set of ϐinite sequences (codes), which is a discrete expression
of a self-similar set. To evaluate “goodness” of each classiϐier, we use the concept
of generalization error and measure it by the Hausdorff metric Hausdorff metricsince it induces the
standard topology on the set of ϐigures (Beer, 1993).

12 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

The rest of the chapter is organized as follows: We review related work in com-
parison to the present work in Section 2.1. We formalize computable binary classi-
ϐication as learning of ϐigures in Section 2.2 and analyze the learnability hierarchy
induced by variants of our model in Section 2.3 and Section 2.4. The mathematical
connection between fractal geometry and the Gold-style learning model with the
Hausdorff and the VC dimensions is presented in Section 2.5 and between com-
putability and learnability of ϐigures in Section 2.6. Section 2.7 gives the summary
of this chapter.

2.1 RelatedWork

Statistical approaches to machine learning are achieving great success (Bishop,
2007) since they are originally designed for analyzing observed multivariate data
and, to date, many statistical methods have been proposed to treat continuous ob-
jects such as real-valued functions. However, most methods pay no attention to
discretization and the ϐinite representation of analog data on a computer. For
example, multi-layer perceptrons are used to learn real-valued functions, since
they can approximate every continuous function arbitrarily and accurately. How-
ever, a perceptron is based on the idea of regulating analog wiring (Rosenblatt,
1958), hence such learning is not purely computable, i.e., it ignores the gap be-
tween analog raw data and digital discretized data. Furthermore, although several
discretization techniques have been proposed (Elomaa and Rousu, 2003; Fayyad
and Irani, 1993; Gama and Pinto, 2006; Kontkanen et al., 1997; Li et al., 2003; Lin
et al., 2003; Liu et al., 2002; Skubacz and Hollmén, 2000), they treat discretization
as data preprocessing for improving the accuracy or efϐiciency of machine learn-
ing algorithms. The process of discretization is not therefore considered from a
computational point of view, and “computability” of machine learning algorithms
is not discussed at sufϐicient depth.

There are several related work considering learning under various restrictions
in the Gold-style learning model (Goldman et al., 2003), the Valiant-style learning
model (Ben-David and Dichterman, 1998; Decatur and Gennaro, 1995), and other
learning context (Khardon and Roth, 1999). Moreover, recently learning from par-
tial examples, or examples with missing information, has attracted much attention
in the Valiant-style learning model (Michael, 2010, 2011). In this chapter we also
consider learning from examples with missing information, which are truncated
ϐinite sequences. However, our model is different from them, since the “missing in-
formation” in this chapter corresponds to measurement error of real-valued data.
As mentioned in Introduction (Chapter 1), our motivation comes from actual mea-
surement/observation of a physical object, where every datum obtained by an ex-
perimental instrument must have some numerical error in principle (Baird, 1994).
For example, if we measure the size of a cell by a microscope equipped with mi-
crometers, we cannot know the true value of the size but an approximate value
with numerical error, which depends on the degree of magniϐication by the mi-
crometers. In this chapter we try to treat this process as learning from multivari-
ate data, where an approximate value corresponds to a truncated ϐinite sequence
and error becomes small as the length of the sequence increases, intuitively. The
asymmetry property of positive and negative examples is naturally derived from
the motivation. The model of computation for real numbers within the framework
of TTE ϐits to our motivation, which is unique in computational learning theory.

2.2 FORMALIZATION OF LEARNING 13

Self-similar sets can be viewed as a geometric interpretation of languages rec-
ognized by 𝜔-automata (Perrin and Pin, 2004), ϐirst introduced by Büchi (1960), 𝜔-automaton
and learning of such languages has been investigated by De La Higuera and Jan-
odet (2001); Jain et al. (2011). Both works focus on learning 𝜔-languages from
their preϐixes, i.e. texts (positive data), and show several learnable classes. This
approach is different from ours since our motivation is to address computability
issues in the ϐield of machine learning from numerical data, and hence there is a
gap between preϐixes of 𝜔-languages and positive data for learning in our setting.
Moreover, we consider learning from both positive and negative data, which is a
new approach in the context of learning of inϐinite words.

To treat values with numerical errors on computers, various effective meth-
ods have been proposed in the research area of numerical computation with re-
sult veriϐication (Oishi, 2008). Originally, they also used an interval as a repre-
sentation of an approximate value and, recently, some efϐicient techniques with
ϐloating-point numbers have been presented (Ogita et al., 2005). While they focus
on computation with numerical errors, we try to embed the concept of errors into
learning based on the computation schema of TTE using interval representation
of real numbers. Considering relationship between our model and such methods
discussed in numerical computation with result veriϐication and constructing efϐi-
cient algorithms using the methods is an interesting future work.

2.2 Formalization of Learning

To analyze binary classiϐication in a computable approach, we ϐirst formalize learn-
ing of ϐigures based on the Gold-style learning model. Speciϐically, we deϐine tar-
gets of learning, representations of classiϐiers produced by a learning machine,
and a protocol for learning. In the following, let ℕ be the set of natural numbers
including 0, ℚ the set of rational numbers, and ℝ the set of real numbers. The
set ℕା (resp. ℝା) is the set of positive natural (resp. real) numbers. The 𝑑-fold
product of ℝ is denoted by ℝௗ and the set of nonempty compact subsets of ℝௗ is
denoted by𝒦∗.

Throughout this chapter, we use the binary representation 𝜌ௗ ∶ (Σௗ)ఠ → ℐௗ as binary representation
the canonical representation for real numbers. If 𝑑 = 1, this is deϐined as follows:
Σ = {𝟶, 𝟷} and

𝜌ଵ(𝑝) ≔
ஶ

෍
௜ୀ଴

𝑝௜ ⋅ 2
ି(௜ାଵ) (2.1)

for an inϐinite sequence 𝑝 = 𝑝଴𝑝ଵ𝑝ଶ… . Note that Σௗ denotes the set {𝑎ଵ𝑎ଶ…𝑎ௗ ∣
𝑎௜ ∈ Σ} and Σଵ = Σ. For example, 𝜌ଵ(𝟶𝟷𝟶𝟶…) = 0.25, 𝜌ଵ(𝟷𝟶𝟶𝟶…) = 0.5, and
so on. Moreover, by using the same symbol 𝜌, we introduce a representation 𝜌ଵ ∶
Σ∗ → 𝒦∗ for ϐinite sequences deϐined as follows:

𝜌ଵ(𝑤) ≔ 𝜌ଵ(↑𝑤) = [𝜌(𝑤𝟶𝟶𝟶…), 𝜌(𝑤𝟷𝟷𝟷…)]

= ൤෍𝑤௜ ⋅ 2ି(௜ାଵ), ෍𝑤௜ ⋅ 2ି(௜ାଵ) + 2|௪| ൨ , (2.2)

where ↑𝑤 = { 𝑝 ∈ Σఠ ∣ 𝑤 ⊏ 𝑝 }. For instance, 𝜌ଵ(𝟶𝟷) = [0.25, 0.5] and 𝜌ଵ(𝟷𝟶) =
[0.5, 0.75].

14 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

In a 𝑑-dimensional space with 𝑑 > 1, we use the 𝑑-dimensional binary repre-
sentation 𝜌ௗ ∶ (Σௗ)ఠ → ℐௗ deϐined in the following manner.

𝜌ௗ(⟨ 𝑝ଵ, 𝑝ଶ, … , 𝑝ௗ ⟩) ≔ ൫𝜌ଵ(𝑝ଵ), 𝜌ଵ(𝑝ଶ), … , 𝜌ଵ(𝑝ௗ)൯ , (2.3)

where 𝑑 inϐinite sequences 𝑝ଵ, 𝑝ଶ, … , and 𝑝ௗ are concatenated using the tupling
function ⟨⋅⟩ such that

⟨ 𝑝ଵ, 𝑝ଶ, … , 𝑝ௗ ⟩ ≔ 𝑝ଵ଴𝑝ଶ଴ …𝑝ௗ଴𝑝ଵଵ𝑝ଶଵ …𝑝ௗଵ𝑝ଵଶ𝑝ଶଶ …𝑝ௗଶ … . (2.4)

Similarly, we deϐine a representation 𝜌ௗ ∶ (Σௗ)∗ → 𝒦∗ by

𝜌ௗ(⟨𝑤ଵ, 𝑤ଶ, … , 𝑤ௗ ⟩) ≔ 𝜌ௗ(↑⟨𝑤ଵ, 𝑤ଶ, … , 𝑤ௗ ⟩),

where

⟨ 𝑤ଵ, 𝑤ଶ, … , 𝑤ௗ ⟩ ≔ 𝑤ଵ
଴𝑤ଶ

଴ …𝑤ௗ
଴𝑤ଵ

ଵ𝑤ଶ
ଵ …𝑤ௗ

ଵ …𝑤ଵ
௡𝑤ଶ

௡ …𝑤ௗ
௡ .

with |𝑤ଵ| = |𝑤ଶ| = ⋯ = |𝑤ௗ| = 𝑛. Note that, for any 𝑤 = ⟨𝑤ଵ, … , 𝑤ௗ ⟩ ∈ (Σௗ)∗,
|𝑤ଵ| = |𝑤ଶ| = ⋯ = |𝑤ௗ| always holds, and we denote the length by |𝑤| in this
chapter. For a set of ϐinite sequences, i.e., a language 𝐿 ⊂ Σ∗, we deϐinelanguage

𝜌ௗ(𝐿) ≔ ൛ 𝜌ௗ(𝑤) ห 𝑤 ∈ 𝐿 ൟ .

We omit the superscript 𝑑 of 𝜌ௗ if it is understood from the context.
A target set of learning is a set of ϐiguresℱ ⊆ 𝒦∗ ϐixed a priori, and one of them

is chosen as a target in each learning term. A learning machine uses self-similar
sets, known as fractals and deϐined by ϐinite sets of contractions. This approach is
one of the key ideas in this chapter. Here, a contraction is a mapping CT ∶ ℝௗ → ℝௗcontraction
such that, for all 𝑥, 𝑦 ∈ 𝑋, 𝑑(CT(𝑥), CT(𝑦)) ≤ 𝑐𝑑(𝑥, 𝑦) for some real number 𝑐 with
0 < 𝑐 < 1. For a ϐinite set of contractions 𝐶, a nonempty compact set 𝐹 satisfying

𝐹 = ራ
େ୘∈஼

CT(𝐹)

is determined uniquely (see the book (Falconer, 2003) for its formal proof). The
set 𝐹 is called the self-similar set of 𝐶. Moreover, if we deϐine a mapping 𝐂𝐓 ∶ 𝒦∗ →self-similar set
𝒦∗ by

𝐂𝐓(𝐾) ≔ ራ
େ୘∈஼

CT(𝐾) (2.5)

and deϐine

𝐂𝐓଴(𝐾) ≔ 𝐾 and 𝐂𝐓௞ାଵ(𝐾) ≔ 𝐂𝐓(𝐂𝐓௞(𝐾)) (2.6)

for each 𝑘 ∈ ℕ recursively, then

𝐹 =
ஶ

ሩ
௞ୀ଴

𝐂𝐓௞(𝐾)

2.2 FORMALIZATION OF LEARNING 15

for every 𝐾 ∈ 𝒦∗ such that CT(𝐾) ⊂ 𝐾 for every CT ∈ 𝐶. This means that we have
a level-wise construction algorithm with 𝐂𝐓 to obtain the self-similar set 𝐹.

Actually, a learning machine produces hypotheses, each of which is a ϐinite lan-hypothesis
guage and becomes a ϐinite expression of a self-similar set that works as a classiϐier.
Formally, for a ϐinite language 𝐻 ⊂ (Σௗ)∗, we consider 𝐻଴, 𝐻ଵ, 𝐻ଶ, … such that 𝐻௞

is recursively deϐined as follows:

൞
𝐻଴ ≔ {𝜆},

𝐻௞ ≔ ൝ ⟨𝑤ଵ𝑢ଵ, 𝑤ଶ𝑢ଶ, … , 𝑤ௗ𝑢ௗ ⟩ อ ⟨ 𝑤ଵ, 𝑤ଶ, … , 𝑤ௗ ⟩ ∈ 𝐻௞ିଵ and
⟨ 𝑢ଵ, 𝑢ଶ, … , 𝑢ௗ ⟩ ∈ 𝐻 ൡ .

We can easily construct a ϐixed program which generates 𝐻଴, 𝐻ଵ, 𝐻ଶ, … when re-
ceiving a hypothesis 𝐻. We give the semantics of a hypothesis 𝐻 by the following
equation:

𝜅(𝐻) ≔
ஶ

ሩ
௞ୀ଴

ራ𝜌(𝐻௞). (2.7)

Since ⋃𝜌(𝐻௞) ⊃ ⋃𝜌(𝐻௞ାଵ) holds for all 𝑘 ∈ ℕ, 𝜅(𝐻) = lim௞→ஶ⋃𝜌(𝐻௞). We
denote the set of hypotheses {𝐻 ⊂ (Σௗ)∗ ∣ 𝐻 is ϐinite}byℋ and call it thehypothesis
space. We use this hypothesis space throughout the chapter. Note that, for a pair hypothesis space
of hypotheses𝐻 and 𝐿,𝐻 = 𝐿 implies 𝜅(𝐻) = 𝜅(𝐿), but the converse may not hold.
Example 2.1
Assume 𝑑 = 2 and let a hypothesis 𝐻 be the set {⟨ 𝟶, 𝟶 ⟩, ⟨ 𝟶, 𝟷 ⟩, ⟨ 𝟷, 𝟷 ⟩} = {𝟶𝟶, 𝟶𝟷,
𝟷𝟷}. We have

𝐻଴ = ∅, 𝐻ଵ = {⟨ 𝟶, 𝟶 ⟩, ⟨ 𝟶, 𝟷 ⟩, ⟨ 𝟷, 𝟷 ⟩} = {𝟶𝟶, 𝟶𝟷, 𝟷𝟷},

𝐻ଶ = ቊ ⟨ 𝟶𝟶, 𝟶𝟶 ⟩, ⟨ 𝟶𝟶, 𝟶𝟷 ⟩, ⟨ 𝟶𝟷, 𝟶𝟷 ⟩, ⟨ 𝟶𝟶, 𝟷𝟶 ⟩, ⟨ 𝟶𝟶, 𝟷𝟷 ⟩,
⟨ 𝟶𝟷, 𝟷𝟷 ⟩, ⟨ 𝟷𝟶, 𝟷𝟶 ⟩, ⟨ 𝟷𝟶, 𝟷𝟷 ⟩, ⟨ 𝟷𝟷, 𝟷𝟷 ⟩ ቋ

= {𝟶𝟶𝟶𝟶, 𝟶𝟶𝟶𝟷, 𝟶𝟶𝟷𝟷, 𝟶𝟷𝟶𝟶, 𝟶𝟷𝟶𝟷, 𝟶𝟷𝟷𝟷, 𝟷𝟷𝟶𝟶, 𝟷𝟷𝟶𝟷, 𝟷𝟷𝟷𝟷}, …
and the ϐigure 𝜅(𝐻) deϐined in the equation (2.7) is the Sierpiński triangle (Figure Sierpiński triangle
2.2). If we consider the following three mappings:

CTଵ ቈ
𝑥ଵ
𝑥ଶ቉ =

1
2 ቈ

𝑥ଵ
𝑥ଶ቉ + ቈ00቉ ,

CTଶ ቈ
𝑥ଵ
𝑥ଶ቉ =

1
2 ቈ

𝑥ଵ
𝑥ଶ቉ + ቈ 0

1/2቉ ,

CTଷ ቈ
𝑥ଵ
𝑥ଶ቉ =

1
2 ቈ

𝑥ଵ
𝑥ଶ቉ + ቈ1/21/2቉ ,

the three squares CTଵ(ℐௗ), CTଶ(ℐௗ), and CTଷ(ℐௗ) are exactly the same as 𝜌(𝟶𝟶),
𝜌(𝟶𝟷), and 𝜌(𝟷𝟷), respectively. Thus each sequence in a hypothesis can be viewed
as a representation of one of these squares, which are called generators for a self- generator
similar set since if we have the initial set ℐௗ and generators CTଵ(ℐௗ), CTଶ(ℐௗ), and
CTଷ(ℐௗ), we can reproduce the three mappings CTଵ, CTଶ, and CTଷ and construct
the self-similar set from them. Note that there exist inϐinitely many hypotheses 𝐿
such that 𝜅(𝐻) = 𝜅(𝐿) and 𝐻 ≠ 𝐿. For example, 𝐿 = {⟨ 𝟶, 𝟶 ⟩, ⟨ 𝟷, 𝟷 ⟩, ⟨ 𝟶𝟶, 𝟷𝟶 ⟩,
⟨ 𝟶𝟶, 𝟷𝟷 ⟩, ⟨ 𝟶𝟷, 𝟷𝟷 ⟩}.

16 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

Figure 2.2 | Generation of the Sier-
piński triangle from the hypothesis H
= {⟨0,1⟩, ⟨0,1⟩, ⟨1,1⟩} (Example 2.1).

1

10
0

ρ(H0)
1

10
0

ρ(H1)
1

10
0

ρ(H2)
1

10
0

ρ(H3)

1

10
0

ρ(H4)
1

10
0

ρ(H5)
1

10
0

ρ(H6)
1

10
0

ρ(H7)

Lemma 2.2: Soundness of hypotheses
For every hypothesis 𝐻 ∈ ℋ, the set 𝜅(𝐻) deϔined by the equation (2.7) is a self-
similar set.

Proof. Let 𝐻 = {𝑤ଵ, 𝑤ଶ, … , 𝑤௡}. We can easily check that the set of rectangles
𝜌(𝑤ଵ), … , 𝜌(𝑤௡) is a generator deϐined by the mappings CTଵ, … , CT௡ , where each
CT௜ maps the unit interval ℐௗ to the ϐigure 𝜌(𝑤௜). Deϐine 𝐂𝐓 and 𝐂𝐓௞ in the same
way as the equations (2.5) and (2.6). For each 𝑘 ∈ ℕ,

ራ𝜌(𝐻௞) = 𝐂𝐓௞(ℐௗ)

holds. It follows that the set 𝜅(𝐻) is exactly the same as the self-similar set deϐined
by the mappings CTଵ, CTଶ, … , CT௡ , that is, 𝜅(𝐻) = ⋃CT௜(𝜅(𝐻)) holds.

To evaluate the “goodness” of each hypothesis, we use the concept of general-
ization error, which is usually used to score the quality of hypotheses in a machinegeneralization error
learning context. The generalization error of a hypothesis 𝐻 for a target ϐigure 𝐾,
written by GE(𝐾,𝐻), is deϐined by the Hausdorff metric 𝑑H on the space of ϐigures,Hausdorff metric

GE(𝐾,𝐻) ≔ 𝑑H(𝐾, 𝜅(𝐻)) = inf ൛ 𝛿 ห 𝐾 ⊆ 𝜅(𝐻)ఋ and 𝜅(𝐻) ⊆ 𝐾ఋ ൟ ,

where 𝐾ఋ is the 𝛿-neighborhood of 𝐾 deϐined by𝛿-neighborhood

𝐾ఋ ≔ ቄ 𝑥 ∈ ℝௗ ቚ 𝑑E(𝑥, 𝑎) ≤ 𝛿 for some 𝑎 ∈ 𝐾 ቅ .

The metric 𝑑E is the Euclidean metric such that

𝑑E(𝑥, 𝑎) = ඩ
ௗ

෍
௜ୀଵ

(𝑥௜ − 𝑎௜)ଶ

for 𝑥 = (𝑥ଵ, … , 𝑥ௗ), 𝑎 = (𝑎ଵ, … , 𝑎ௗ) ∈ ℝௗ . The Hausdorff metric is one of the stan-
dard metrics on the space since the metric space (𝒦∗, 𝑑H) is complete (in the sense

2.2 FORMALIZATION OF LEARNING 17

of topology) and GE(𝐾, 𝐻) = 0 if and only if𝐾 = 𝜅(𝐻)Beer (1993); Kechris (1995).
The topology on 𝒦∗ induced by the Hausdorff metric is called the Vietoris topol-
ogy Vietoris topology. Since the cardinality of the set of hypothesesℋ is smaller than that of the set
of ϐigures𝒦∗, we often cannot ϐind the exact hypothesis𝐻 for a ϐigure 𝐾 such that
GE(𝐾,𝐻) = 0. However, following the Collage Theorem given by Falconer (2003),
we show that the power of representation of hypotheses is still sufϐicient, that is,
we always can approximate a given ϐigure arbitrarily closely by some hypothesis.

Lemma 2.3: Representational power of hypotheses
For any 𝛿 ∈ ℝ and for every ϔigure 𝐾 ∈ 𝒦∗, there exists a hypothesis 𝐻 such that
GE(𝐾,𝐻) < 𝛿.

Proof. Fix a ϐigure 𝐾 and the parameter 𝛿. Here we denote the diameter of the set
𝜌(𝑤) with |𝑤| = 𝑘 by diam(𝑘). Then we have

diam(𝑘) = √𝑑 ⋅ 2ି௞ .

For example, diam(1) = 1/2 and diam(2) = 1/4 if 𝑑 = 1, and diam(1) = 1/√2
and diam(2) = 1/√8 if 𝑑 = 2. For 𝑘 with diam(𝑘) < 𝛿, let

𝐻 = ቄ 𝑤 ∈ (Σௗ)∗ ቚ |𝑤| = 𝑘 and 𝜌(𝑤) ∩ 𝐾 ≠ ∅ ቅ .

We can easily check that the diam(𝑘)-neighborhood of the ϐigure 𝐾 contains 𝜅(𝐻)
and diam(𝑘)-neighborhood of 𝜅(𝐻) contains 𝐾. Thus we have GE(𝐾,𝐻) < 𝛿.

There are many other representation systems that meet the following condi-
tion. One of remarkable features of our system with self-similar sets will be shown
in Lemma 2.37. Moreover, to work as a classiϐier, every hypothesis 𝐻 has to be
computable, that is, the function ℎ ∶ (Σௗ)∗ → {0, 1} such that, for all 𝑤 ∈ (Σௗ)∗, computable

ℎ(𝑤) = ൝ 1 if 𝜌(𝑤) ∩ 𝜅(𝐻) ≠ ∅,
0 otherwise (2.8)

should be computable. We say that such ℎ is the classiϔier of𝐻. The computability classifier
of ℎ is not trivial, since for a ϐinite sequence 𝑤, the two conditions ℎ(𝑤) = 1 and
𝑤 ∈ 𝐻௞ are not equivalent. Intuitively, this is because each interval represented
by a ϐinite sequence is closed. For example, in the case of Example 2.1, ℎ(𝟷𝟶) = 1 closed
because 𝜌(𝟷𝟶) = [0.5, 1] × [0, 0.5] and 𝜌(𝟷𝟶) ∩ 𝜅(𝐻) = {(0.5, 0.5)} ≠ ∅ whereas
𝟷𝟶 ∉ 𝐻௞ for any 𝑘 ∈ ℕ. Here we guarantee this property of computability.

Lemma 2.4: Computability of classiϐiers
For every hypothesis 𝐻 ∈ ℋ, the classiϔier ℎ of 𝐻 deϔined by the equation (2.8) is
computable.

Proof. First we consider whether or not the boundary of an interval is contained
in 𝜅(𝐻). Suppose 𝑑 = 1 and let 𝐶 be a ϐinite set of contractions and 𝐹 be the
self-similar set of 𝐶. We have the following property: For every interval [𝑥, 𝑦] =
CTଵ ∘ CTଶ ∘ … ∘ CT௡(ℐଵ) such that CT௜ ∈ 𝐶 for all 𝑖 ∈ {1, … , 𝑛} (𝑛 ∈ ℕ), we have
𝑥 ∈ 𝐹 (resp. 𝑦 ∈ 𝐹) if and only if 0 ∈ CT(ℐଵ) (resp. 1 ∈ CT(ℐଵ)) for some CT ∈ 𝐶.
This means that if [𝑥, 𝑦] = 𝜌(𝑣) with a sequence 𝑣 ∈ 𝐻௞ (𝑘 ∈ ℕ) for a hypothesis

18 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

Algorithm 2.1: Classiϐier ℎ of hypothesis𝐻

Input: Finite sequence 𝑤 and hypothesis 𝐻
Output: Class label 1 or 0 of 𝑤
1: 𝑘 ← 0
2: repeat
3: 𝑘 ← 𝑘 + 1
4: untilmin௩∈ுೖ |𝑣| > |𝑤|
5: for each 𝑣 ∈ 𝐻௞

6: if𝑤 ⊑ 𝑣 then
7: output 1 and halt
8: else if CčĊĈĐBĔĚēĉĆėĞ(𝑤, 𝑣, 𝐻) = 1 then
9: output 1 and halt

10: end if
11: end for
12: output 0
function CčĊĈĐBĔĚēĉĆėĞ(𝑤, 𝑣, 𝐻)
1: 𝑎 ← 𝑎ଵ𝑎ଶ…𝑎ௗ // 𝑎 is a ϐinite sequence whose length is 𝑑
2: for each 𝑎௦ in {𝑎ଵ, 𝑎ଶ, … , 𝑎ௗ}
3: if𝑤௦ ⊑ 𝑣௦ then 𝑎௦ ← ⊥
4: else
5: if𝑤௦ ⊑ 𝑣௦ then 𝑎௦ ← 𝟶
6: else if𝑤௦ ⊑ 𝑣௦ then 𝑎௦ ← 𝟷
7: else return 0
8: end if
9: end if

10: end for
11: for each 𝑢 ∈ 𝐻
12: if 𝑢 = 𝑎𝑎𝑎…𝑎 then return 1
13: end for
14: return 0

𝐻, we have 𝑥 ∈ 𝜅(𝐻) (resp. 𝑦 ∈ 𝜅(𝐻)) if and only if 𝑢 ∈ {𝟶}ା (resp. 𝑢 ∈ {𝟷}ା) for
some 𝑢 ∈ 𝐻.

We show a pseudo-code of the classiϐier ℎ in Algorithm 2.1 and prove that the
output of the algorithm is 1 if and only if ℎ(𝑤) = 1, i.e., 𝜌(𝑤) ∩ 𝜅(𝐻) ≠ ∅. In
the algorithm, 𝑣௦ and 𝑣௦ denote the previous and subsequent binary sequences of
𝑣௦ with |𝑣௦| = |𝑣௦| = |𝑣௦| in the lexicographic order, respectively. For example,
if 𝑣௦ = 𝟶𝟶𝟷, 𝑣௦ = 𝟶𝟶𝟶 and 𝑣௦ = 𝟶𝟷𝟶. Moreover, we use the special symbol ⊥
meaning undeϐinedness, that is, 𝑣 = 𝑤 if and only if 𝑣௜ = 𝑤௜ for all 𝑖 ∈ {0, 1, … , |𝑣|−
1} with 𝑣௜ ≠ ⊥ and 𝑤௜ ≠ ⊥.

The “if” part: For an input of a ϐinite sequence𝑤 and a hypothesis𝐻, if ℎ(𝑤) =
1, there are two possibilities as follows:

1. For some 𝑘 ∈ ℕ, there exists 𝑣 ∈ 𝐻௞ such that 𝑤 ⊑ 𝑣. This is because 𝜌(𝑤) ⊇
𝜌(𝑣) and 𝜌(𝑤) ∩ 𝜅(𝐻) ≠ ∅.

2.2 FORMALIZATION OF LEARNING 19

2. The above condition does not hold, but 𝜌(𝑤) ∩ 𝜅(𝐻) ≠ ∅.
In the ϐirst case, the algorithm goes to line 7 and stops with outputting 1. The
second case means that the algorithm uses the function CčĊĈĐBĔĚēĉĆėĞ. Since
ℎ(𝑤) = 1, there should exist a sequence 𝑣 ∈ 𝐻 such that 𝑢 = 𝑎 for some 𝑢 ∈ 𝐻,
where 𝑎 is obtained in lines 1–10. CčĊĈĐBĔĚēĉĆėĞ therefore returns 1.

The “only if” part: In Algorithm 2.1, if 𝑣 ∈ 𝐻௞ satisϐies conditions in line 6 or
line 8, ℎ(𝑤) ∩ 𝜅(𝐻) ≠ ∅. Thus ℎ(𝑤) = 1 holds.

The set { 𝜅(𝐻) ∣ 𝐻 ⊂ (Σௗ)∗ and the classiϐier ℎ of 𝐻 is computable } exactly cor-
responds to an indexed family of recursive concepts / languages discussed in com- indexed family of recursive concepts
putational learning theory (Angluin, 1980), which is a common assumption for
learning of languages. On the other hand, there exists some class of ϐiguresℱ ⊆ 𝒦∗

that is not an indexed family of recursive concepts. This means that, for some ϐig-
ure 𝐾, there is no computable classiϐier which classiϐies all data correctly. There-
fore we address the problems of both exact and approximate learning of ϐigures to
obtain a computable classiϐier for any target ϐigure.

We consider two types of input data streams, one includes both positive and
negative data and the other includes only positive data, to analyze learning based
on the Gold-style learning model. Formally, each training datum is called an ex-
ample and is deϐined as a pair (𝑤, 𝑙) of a ϐinite sequence 𝑤 ∈ (Σௗ)∗ and a label example
𝑙 ∈ {0, 1}. For a target ϐigure 𝐾, we deϐine

𝑙 ≔ ൝ 1 if 𝜌(𝑤) ∩ 𝐾 ≠ ∅ (positive example positive example),
0 otherwise (negative example negative example).

In the following, for a target ϐigure𝐾, we denote the set of ϐinite sequences of posi-
tive examples {𝑤 ∈ (Σௗ)∗ ∣ 𝜌(𝑤)∩𝐾 ≠ ∅} by Pos(𝐾) and that of negative examples
by Neg(𝐾). From the geometric nature of ϐigures, we obtain the following mono-
tonicity of examples: monotonicity

Lemma 2.5: Monotonicity of examples
If (𝑣, 1) is an example of 𝐾, then (𝑤, 1) is an example of 𝐾 for all preϔixes 𝑤 ⊑ 𝑣,
and (𝑣𝑎, 1) is an example of 𝐾 for some 𝑎 ∈ Σௗ . If (𝑤, 0) is an example of 𝐾, then
(𝑤𝑣, 0) is an example of 𝐾 for all 𝑣 ∈ (Σௗ)∗.

Proof. From the deϐinition of the representation 𝜌 in the equations (2.1) and (2.3),
if 𝑤 ⊑ 𝑣, we have 𝜌(𝑤) ⊇ 𝜌(𝑣), hence (𝑤, 1) is an example of 𝐾. Moreover,

ራ
௔∈ஊ೏

𝜌(𝑣𝑎) = 𝜌(𝑢)

holds. Thus there should exist an example (𝑣𝑎, 1) for some 𝑎 ∈ Σௗ . Furthermore,
for all 𝑣 ∈ Σ∗, 𝜌(𝑤𝑣) ⊂ 𝜌(𝑤). Therefore if 𝐾 ∩ 𝜌(𝑤) = ∅, then 𝐾 ∩ 𝜌(𝑤𝑣) = ∅ for
all 𝑣 ∈ (Σௗ)∗, and (𝑤𝑣, 0) is an example of 𝐾.

We say that an inϐinite sequence 𝜎 of examples of a ϐigure𝐾 is a presentation of presentation
𝐾. The 𝑖th example is denoted by 𝜎(𝑖 − 1), and the set of all examples occurring in
𝜎 is denoted by range(𝜎)². The initial segment of 𝜎 of length 𝑛, i.e., the sequence

²The reason for this notation is that ఙ can be viewed as a mapping from ℕ (including 0) to the set
of examples.

20 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

Table 2.1 | Relationship between the
conditions for each finite sequence
w ∈ ∑* and the standard notation of
binary classification.

Target ϐigure 𝐾
𝑤 ∈ Pos(𝐾) 𝑤 ∈ Neg(𝐾)

(𝜌(𝑤) ∩ 𝐾 ≠ ∅) (𝜌(𝑤) ∩ 𝐾 = ∅)

Hypothesis𝐻
ℎ(𝑤) = 1 True positive False positive
(𝜌(𝑤) ∩ 𝜅(𝐻) ≠ ∅) (Type I error)
ℎ(𝑤) = 0 False negative True negative(𝜌(𝑤) ∩ 𝜅(𝐻) = ∅) (Type II error)

𝜎(0), 𝜎(1), … , 𝜎(𝑛−1), is denoted by 𝜎[𝑛−1]. A text of a ϐigure𝐾 is a presentation
𝜎 such that

{ 𝑤 ห (𝑤, 1) ∈ range(𝜎) } = Pos(𝐾) (= { 𝑤 ห 𝜌(𝑤) ∩ 𝐾 ≠ ∅ }),

and an informant is a presentation 𝜎 such thatinformant

{ 𝑤 ห (𝑤, 1) ∈ range(𝜎) } = Pos(𝐾) and
{ 𝑤 ห (𝑤, 0) ∈ range(𝜎) } = Neg(𝐾).

Table 2.1 shows the relationship between the standard terminology in classiϐica-
tion and our deϐinitions. For a target ϐigure 𝐾 and the classiϐier ℎ of a hypothesis
𝐻, the set

{ 𝑤 ∈ Pos(𝐾) ห ℎ(𝑤) = 1 }

corresponds to true positive,true positive

{ 𝑤 ∈ Neg(𝐾) ห ℎ(𝑤) = 1 }

false positive (type I error),false positive (type I error)

{ 𝑤 ∈ Pos(𝐾) ห ℎ(𝑤) = 0 }

false negative (type II error), andfalse negative (type II error)

{ 𝑤 ∈ Neg(𝐾) ห ℎ(𝑤) = 0 }

true negative.true negative
Let ℎ be the classiϐier of a hypothesis𝐻. We say that the hypothesis𝐻 is consis-

tent with an example (𝑤, 𝑙) if 𝑙 = 1 implies ℎ(𝑤) = 1 and 𝑙 = 0 implies ℎ(𝑤) = 0,consistent
and consistent with a set of examples 𝐸 if 𝐻 is consistent with all examples in 𝐸.

A learning machine, called a learner, is a procedure, (i.e. a Turing machine thatlearner
never halts) that reads a presentation of a target ϐigure from time to time, and
outputs hypotheses from time to time. In the following, we denote a learner by M
and an inϐinite sequence of hypotheses produced by M on the input 𝜎 by Mఙ , and
Mఙ(𝑖 − 1) denotes the 𝑖th hypothesis produced by M. Assume that M receives 𝑗
examples 𝜎(0), 𝜎(1), … , 𝜎(𝑗 − 1) so far when it outputs the 𝑖th hypothesis Mఙ(𝑖 −
1). We do not require the condition 𝑖 = 𝑗, that is, the inequation 𝑖 ≤ 𝑗 usually
holds sinceM can “wait” until it receives enough examples. We say that an inϐinite
sequence of hypotheses Mఙ converges to a hypothesis𝐻 if there exists 𝑛 ∈ ℕ such
that Mఙ(𝑖) = 𝐻 for all 𝑖 ≥ 𝑛.

2.3 EXACT LEARNING OF FIGURES 21

FIGEX-INF = FIGCONS-INF = FIGRELEX-INF = FIGEFEX-INF

FIGEX-TXT = FIGCONS-TXT

FIGREFEX-INF

FIGRELEX-TXT

FIGREFEX-TXT

FIGEFEX-TXT = ∅ Figure 2.3 | Learnability hierarchy. In
each line, the lower set is a proper
subset of the upper set.

2.3 Exact Learning of Figures

We analyze “exact” learning of ϐigures. This means that, for any target ϐigure 𝐾,
there should be a hypothesis𝐻 such that the generalization error is zero (i.e., 𝐾 =
𝜅(𝐻)), hence the classiϐierℎ of𝐻 can classify all data correctly with no error, that is,
ℎ satisϐies the equation (2.8). The goal is to ϐind such a hypothesis𝐻 from examples
(training data) of 𝐾.

In the following two sections (Sections 2.3 and 2.4), we follow the standard
path of studies in computational learning theory (Jain et al., 1999b; Jain, 2011;
Zeugmann and Zilles, 2008), that is, we deϐine learning criteria to understand var-
ious learning situations and construct a learnability hierarchy under the criteria.
We summarize our results in Figure 2.3.

2.3.1 Explanatory Learning

The most basic learning criterion in the Gold-style learning model is Eĝ-learning
(EX means EXplain), or learning in the limit, proposed by Gold (1967). We call learning in the limit
these criteria FĎČEĝ-Iēċ- (INF means an informant) and FĎČEĝ-Tĝę-learning (TXT
means a text) for Eĝ-learning from informants and texts, respectively. We intro-
duce these criteria into the learning of ϐigures, and analyze the learnability.

Deϐinition 2.6: Explanatory learning
A learner M FĎČEĝ-Iēċ-learns FIGEX-INF-learning(resp. FĎČEĝ-Tĝę-learns) a set of ϐigures ℱ ⊆ 𝒦∗

FIGEX-TXT-learningif for all ϐigures 𝐾 ∈ ℱ and all informants (resp. texts) 𝜎 of 𝐾, the outputs Mఙ
converge to a hypothesis𝐻 such that GE(𝐾,𝐻) = 0.

For every learning criterion CR introduced in the following, we say that a set of
ϐigures ℱ is CR-learnable if there exists a learner that CR-learns ℱ, and denote by
CR the collection of CR-learnable sets of ϐigures following the standard notation of
this ϐield (Jain et al., 1999b).

First, we consider FĎČEĝ-Iēċ-learning. Informally, a learner can FĎČEĝ-Iēċ-
learn a set of ϐigures if it has an ability to enumerate all hypotheses and to judge
whether or not each hypothesis is consistent with the received examples (Gold,

22 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

Procedure 2.2: Learning procedure that FĎČEĝ-Iēċ-learns 𝜅(ℋ)

Input: Informant 𝜎 = (𝑤଴, 𝑙଴), (𝑤ଵ, 𝑙ଵ), … of ϐigure 𝐾 ∈ 𝜅(ℋ)
Output: Inϐinite sequence of hypotheses Mఙ(0),Mఙ(1), …
1: 𝑖 ← 0
2: 𝐸 ← ∅ // 𝐸 is a set of received examples
3: repeat
4: read 𝜎(𝑖) and add to 𝐸 // 𝜎(𝑖) = (𝑤௜ , 𝑙௜)
5: search the ϐirst hypothesis𝐻 consistent with 𝐸

through a normal enumeration
6: output 𝐻 // Mఙ(𝑖) = 𝐻
7: 𝑖 ← 𝑖 + 1
8: until forever

1967). Here we introduce a convenient enumeration of hypotheses. An inϐinite se-
quence of hypotheses𝐻଴, 𝐻ଵ, … is called anormal enumeration if {𝐻௜ ∣ 𝑖 ∈ ℕ } = ℋnormal enumeration
and, for all 𝑖, 𝑗 ∈ ℕ, 𝑖 < 𝑗 implies

max
௩∈ு೔

|𝑣| ≤ max
௪∈ுೕ

|𝑤|.

We can easily implement a procedure that enumerates ℋ through a normal enu-
meration.

Theorem 2.7
The set of ϔigures 𝜅(ℋ) = {𝜅(𝐻) ∣ 𝐻 ∈ ℋ} is FĎČEĝ-Iēċ-learnable.

Proof. This learning can be done by the well-known strategy of identiϐication by
enumeration. We show a pseudo-code of a learner M that FĎČEĝ-Iēċ-learns 𝜅(ℋ)
in Procedure 2.2. The learner M generates hypotheses through normal enumer-
ation. If M outputs a wrong hypothesis 𝐻, there must exist a positive or negative
example that is not consistent with the hypothesis since, for a target ϐigure 𝐾∗,

Pos(𝐾∗) ⊖ Pos(𝜅(𝐻)) ≠ ∅

for every hypothesis 𝐻 with 𝜅(𝐻) ≠ 𝐾∗, where 𝑋 ⊖ 𝑌 denotes the symmetric dif-
ference, i.e., 𝑋 ⊖ 𝑌 = (𝑋 ∪ 𝑌) ⧵ (𝑋 ∩ 𝑌). Thus the learner M changes the wrong
hypothesis and reaches to a correct hypothesis 𝐻∗ such that 𝜅(𝐻∗) = 𝐾∗ in ϐinite
time. If M produces a correct hypothesis, it never changes it, since every example
is consistent with it. Therefore M FĎČEĝ-Iēċ-learns 𝜅(ℋ).

Next, we consider FĎČEĝ-Tĝę-learning. In learning of languages from texts, the
necessary and sufϐicient conditions for learning have been studied in detail (An-
gluin, 1980, 1982; Kobayashi, 1996; Lange et al., 2008; Motoki et al., 1991; Wright,
1989), and characterization of learnability using ϐinite tell-tale sets is one of the
crucial results. We interpret these results into the learning of ϐigures and show
the FĎČEĝ-Tĝę-learnability.

2.3 EXACT LEARNING OF FIGURES 23

Deϐinition 2.8: Finite tell-tale set (cf. Angluin, 1980)
Let ℱ be a set of ϐigures. For a ϐigure 𝐾 ∈ ℱ, a ϐinite subset 𝒯 of the set of
positive examples Pos(𝐾) is a ϔinite tell-tale set of finite tell-tale set𝐾 with respect to ℱ if for all
ϐigures 𝐿 ∈ ℱ, 𝒯 ⊂ Pos(𝐿) implies Pos(𝐿) ⊄ Pos(𝐾) (i.e., 𝐿 ⊄ 𝐾). If every 𝐾 ∈ ℱ
has ϐinite tell-tale sets with respect to ℱ, we say that ℱ has a ϐinite tell-tale set.

Theorem 2.9
Let ℱ be a subset of 𝜅(ℋ). Then ℱ is FĎČEĝ-Tĝę-learnable if and only if there is
a procedure that, for every ϔigure 𝐾 ∈ ℱ, enumerates a ϔinite tell-tale set𝑊 of 𝐾
with respect to ℱ.

This theorem can be proved in exactly the same way as that for learning of lan-
guages (Angluin, 1980). Note that such procedure does not need to stop. Using
this theorem, we show that the set 𝜅(ℋ) is not FĎČEĝ-Tĝę-learnable.

Theorem 2.10
The set 𝜅(ℋ) does not have a ϔinite tell-tale set.

Proof. Fix a ϐigure 𝐾 = 𝜅(𝐻) ∈ 𝜅(ℋ) such that #𝐻 ≥ 2 and ϐix a ϐinite set 𝑇 =
{𝑤ଵ, 𝑤ଶ, … , 𝑤௡ } contained in Pos(𝐾). For each ϐinite sequence 𝑤௜ , there exists
𝑢௜ ∈ Pos(𝐾) such that 𝑤௜ ⊏ 𝑢௜ with 𝑤௜ ≠ 𝑢௜ . For the ϐigure 𝐿 = 𝜅(𝑈) with
𝑈 = {𝑢ଵ, … , 𝑢௡}, 𝑇 ⊂ Pos(𝐿) and Pos(𝐿) ⊂ Pos(𝐾) hold. Therefore 𝐾 has no ϐinite
tell-tale set with respect to 𝜅(ℋ).

Corollary 2.11
The set of ϔigures 𝜅(ℋ) is not FĎČEĝ-Tĝę-learnable.

In any realistic situation of machine learning, however, this set 𝜅(ℋ) is too large
to search for the best hypothesis since we usually want to obtain a “compact” rep-
resentation of a target ϐigure. Thus we (implicitly) have an upper bound on the
number of elements in a hypothesis. Here we give a fruitful result for the above
situation, that is, if we ϐix the number of elements #𝐻 in each hypothesis 𝐻 a pri-
ori, the resulting set of ϐigures becomes FĎČEĝ-Tĝę-learnable. Intuitively, this is
because if we take 𝑘 large enough, the set {𝑤 ∈ Pos(𝐾) ∣ |𝑤| ≤ 𝑘} becomes a ϐinite
tell-tale set of 𝐾. For a ϐinite subset of natural numbers 𝑁 ⊂ ℕ, we denote the set
of hypotheses {𝐻 ∈ ℋ ∣ #𝐻 ∈ 𝑁} by ℋே .

Theorem 2.12
There exists a procedure that, for all ϔinite subsets 𝑁 ⊂ ℕ and all ϔigures 𝐾 ∈
𝜅(ℋே), enumerates a ϔinite tell-tale set of 𝐾 with respect to 𝜅(ℋே).

Proof. First, we assume that 𝑁 = {1}. It is trivial that there exists a procedure
that, for an arbitrary ϐigure 𝐾 ∈ 𝜅(ℋே), enumerates a ϐinite tell-tale set of 𝐾 with
respect to 𝜅(ℋே), since we always have 𝐿 ⊄ 𝐾 for all pairs of ϐigures𝐾, 𝐿 ∈ 𝜅(ℋே).

Next, ϐix a ϐinite set 𝑁 ⊂ ℕ with 𝑁 ≠ {1}. Let us consider the procedure that
enumerates elements of the sets

Posଵ(𝐾), Posଶ(𝐾), Posଷ(𝐾), … .

We show that this procedure enumerates a ϐinite tell-tale set of 𝐾 with respect to
𝜅(ℋே). Notice that the number of elements #Pos௞(𝐾) monotonically increases
when 𝑘 increases whenever 𝐾 ∉ 𝜅(ℋ{ଵ}).

24 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

For each level 𝑘 and for a ϐigure 𝐿 ∈ 𝜅(ℋ),

𝐿 ⊂ 𝐾 and Pos(𝐿) ⊇ ራ
௜∈{ଵ,ଶ,…,௞}

Pos௜(𝐾)

implies

Pos(𝐿) = ራ
௜∈{ଵ,ଶ,…,௞}

Pos௜(𝐾). (2.9)

Here we deϐine the set

ℒ௞ = { 𝐿 ∈ 𝜅(ℋே) ห 𝐿 ⊂ 𝐾 and 𝐿 satisϐies the condition (2.9) }

for each level 𝑘 ∈ ℕ. Then we can easily check that the minimum size of hypothesis
min఑(ு)∈ℒೖ #𝐻 monotonically increases as 𝑘 increases. This means that there ex-
ists a natural number 𝑛 such thatℒ௞ = ∅ for every 𝑘 ≥ 𝑛, since for each hypothesis
𝐻 ∈ ℋே we must have #𝐻 ∈ 𝑁. Therefore the set

𝒯 = ራ
௜∈{ଵ,ଶ,…,௡}

Pos௜(𝐾)

is a ϐinite tell-tale set of 𝐾 with respect to 𝜅(ℋே).

Corollary 2.13
For all ϔinite subsets of natural numbers 𝑁 ⊂ ℕ, the set of ϔigures 𝜅(ℋே) is
FĎČEĝ-Tĝę-learnable.

2.3.2 Consistent Learning

In a learning process, it is natural that every hypothesis generated by a learner is
consistent with the examples received by it so far. Here we introduceFĎČCĔēĘ-Iēċ-
and FĎČCĔēĘ-Tĝę-learning (CONS means CONSistent). These criteria correspond
to CĔēĘ-learning that was ϐirst introduced by Blum and Blum (1975)³. This model
was also used (but implicitly) in the Model Inference System (MIS) proposed by
Shapiro (1981, 1983), and studied in the computational learning of formal lan-
guages and recursive functions (Jain et al., 1999b).

Deϐinition 2.14: Consistent learning
A learnerMFĎČCĔēĘ-Iēċ-learns

FIGCONS-INF-learning
(resp. FĎČCĔēĘ-Tĝę-learns) a set of ϐiguresℱ ⊆

𝒦∗ if M FĎČEĝ-Iēċ-learns (resp. FĎČEĝ-Tĝę-learns)
FIGCONS-TXT-learning

ℱ and for all ϐigures 𝐾 ∈ ℱ
and all informants (resp. texts) 𝜎 of𝐾, each hypothesisMఙ(𝑖) is consistent with
𝐸௜ that is the set of examples received by M until just before it generates the
hypothesis Mఙ(𝑖).

Assume that a learnerM achieves FĎČEĝ-Iēċ-learning of 𝜅(ℋ) using Procedure
2.2. We can easily check that M always generates a hypothesis that is consistent
with the received examples.

³Consistency was also studied in the same form by Barzdin (1974) in Russian.

2.3 EXACT LEARNING OF FIGURES 25

Corollary 2.15
FĎČEĝ-Iēċ = FĎČCĔēĘ-Iēċ.

Suppose that ℱ ⊂ 𝜅(ℋ) is FĎČEĝ-Tĝę-learnable. We can construct a learner M in
the same way as in the case of EX-learning of languages from texts (Angluin, 1980),
where M always outputs a hypothesis that is consistent with received examples.

Corollary 2.16
FĎČEĝ-Tĝę = FĎČCĔēĘ-Tĝę.

2.3.3 Reliable and Refutable Learning

In this subsection, we consider target ϐigures that might not be represented exactly
by any hypothesis since there are inϐinitely many such ϐigures, and if we have no
background knowledge, there is no guarantee of the existence of an exact hypoth-
esis. Thus in practice this approach is more convenient than the explanatory or
consistent learning considered in the previous two subsections.

To realize the above case, we use two concepts, reliability and refutability. Re-
liable learning was introduced by Blum and Blum (1975) and Minicozzi (1976)
and refutable learning by Mukouchi and Arikawa (1995) and Sakurai (1991) in
computational learning of languages and recursive functions to introduce targets
which cannot be exactly represented by any hypotheses, and developed in litera-
tures (Jain et al., 2001; Merkle and Stephan, 2003; Mukouchi and Sato, 2003). Here
we introduce these concepts into the learning of ϐigures and analyze learnability.

First, we treat reliable learning of ϐigures. Intuitively, reliability requires that
an inϐinite sequence of hypotheses only converges to a correct hypothesis.

Deϐinition 2.17: Reliable learning
A learner M FĎČRĊđEĝ-Iēċ-learns FIGRELEX-INF-learning(resp. FĎČRĊđEĝ-Tĝę-learns) a set of ϐigures
ℱ ⊆ 𝒦∗ if M satisϐies FIGRELEX-TXT-learningthe following conditions:

1. The learner M FĎČEĝ-Iēċ-learns (resp. FĎČEĝ-Tĝę-learns) ℱ.
2. For any target ϐigure 𝐾 ∈ 𝒦∗ and its informants (resp. texts) 𝜎, the inϐinite

sequence of hypotheses Mఙ does not converge to a wrong hypothesis 𝐻
such that GE(𝐾, 𝜅(𝐻)) ≠ 0.

We analyze reliable learning of ϐigures from informants. Intuitively, if a learner
can judge whether or not the current hypothesis 𝐻 is consistent with the target
ϐigure, i.e., 𝜅(𝐻) = 𝐾 or not in ϐinite time, then the target ϐigure is reliably learnable.

Theorem 2.18
FĎČEĝ-Iēċ = FĎČRĊđEĝ-Iēċ.

Proof. Since the statement FĎČRĊđEĝ-Iēċ ⊆ FĎČEĝ-Iēċ is trivial, we prove the
opposite FĎČEĝ-Iēċ ⊆ FĎČRĊđEĝ-Iēċ. Fix a set of ϐigures ℱ ⊆ 𝜅(ℋ) with ℱ ∈
FĎČEĝ-Iēċ, and suppose that a learner M FĎČEĝ-Iēċ-learns ℱ using Procedure 2.2.
The goal is to show thatℱ ∈ FĎČRĊđEĝ-Iēċ. Assume that a target ϐigure𝐾 belongs
to 𝒦∗ ⧵ ℱ. Here we have the following property: for all ϐigures 𝐿 ∈ ℱ, there must
exist a ϐinite sequences 𝑤 ∈ (Σௗ)∗ such that

𝑤 ∈ Pos(𝐾)⊖ Pos(𝐿),

26 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

hence for any M’s current hypothesis 𝐻, M changes 𝐻 if it receives a positive or
negative example (𝑤, 𝑙) such that 𝑤 ∈ Pos(𝐾) ⊖ Pos(𝜅(𝐻)). This means that an
inϐinite sequence of hypotheses does not converge to any hypothesis. Thus we
have ℱ ∈ FĎČRĊđEĝ-Iēċ.

In contrast, we have an interesting result in the reliable learning from texts.
We show in the following that FĎČEĝ-Tĝę ≠ FĎČRĊđEĝ-Tĝę holds and that a set
of ϐigures ℱ is reliably learnable from positive data only if any ϐigure 𝐾 ∈ ℱ is a
singleton. Remember that ℋே denotes the set of hypotheses {𝐻 ∈ ℋ ∣ #𝐻 ∈ 𝑁}
for a subset 𝑁 ⊂ ℕ and, for simplicity, we denoteℋ{௡} by ℋ௡ for 𝑛 ∈ ℕ.

Theorem 2.19
The set of ϔigures 𝜅(ℋே) is FĎČRĊđEĝ-Tĝę-learnable if and only if𝑁 = {1}.

Proof. First we show that the set of ϐigures 𝜅(ℋଵ) is FĎČRĊđEĝ-Tĝę-learnable.
From the self-similar sets property of hypotheses, we have the following: a ϐig-
ure 𝐾 ∈ 𝜅(ℋ) is a singleton if and only if 𝐾 ∈ 𝜅(ℋଵ). Let 𝐾 ∈ 𝒦∗ ⧵ 𝜅(ℋଵ), and
assume that a learner M FĎČEĝ-Tĝę-learns 𝜅(ℋଵ). We can naturally suppose that
M changes the current hypothesis𝐻whenever it receives a positive example (𝑤, 1)
such that 𝑤 ∉ Pos(𝜅(𝐻)) without loss of generality. For any hypothesis 𝐻 ∈ ℋଵ,
there exists𝑤 ∈ (Σௗ)∗ such that

𝑤 ∈ Pos(𝐾) ⧵ Pos(𝜅(𝐻))

since 𝐾 is not a singleton. Thus if the learner M receives such a positive example
(𝑤, 1), it changes the hypothesis 𝐻. This means that an inϐinite sequence of hy-
potheses does not converge to any hypothesis. Therefore𝜅(ℋଵ) is FĎČRĊđEĝ-Tĝę-
learnable.

Next, we prove that 𝜅(ℋ௡) is not FĎČRĊđEĝ-Tĝę-learnable for any 𝑛 > 1. Fix
such 𝑛 ∈ ℕwith 𝑛 > 1. We can easily check that, for a ϐigure𝐾 ∈ 𝜅(ℋ௡) and any of
its ϐinite tell-tale sets𝒯with respect to 𝜅(ℋ௡), there exists a ϐigure 𝐿 ∈ 𝒦∗⧵𝜅(ℋ௡)
such that 𝐿 ⊂ 𝐾 and 𝒯 ⊂ Pos(𝐿). This means that

Pos(𝐿) ⊆ Pos(𝐾) and 𝒯 ⊆ Pos(𝐿)

hold. Thus if a learner M FĎČEĝ-Tĝę-learns 𝜅(ℋ௡), Mఙ for some presentation 𝜎
of some such L must converge to some hypothesis in ℋ௡ . Consequently, we have
𝜅(ℋ௡) ∉ FĎČRĊđEĝ-Tĝę.

Corollary 2.20
FĎČRĊđEĝ-Tĝę ⊂ FĎČEĝ-Tĝę.

Sakurai (1991) proved that a set of concepts 𝒞 is reliably EX-learnable from texts
if and only if 𝒞 contains no inϐinite concept (p. 182, Theorem 3.1)⁴. However, we
have shown that the set 𝜅(ℋଵ) is FĎČRĊđEĝ-Tĝę-learnable, though all ϐigures 𝐾 ∈
𝜅(ℋଵ) correspond to inϐinite concepts since Pos(𝐾) is inϐinite for all 𝐾 ∈ 𝜅(ℋଵ).
The monotonicity of the set Pos(𝐾) (Lemma 2.5), which is a constraint naturally
derived from the geometric property of examples, causes this difference.

Next, we extend FĎČEĝ-Iēċ- and FĎČEĝ-Tĝę-learning by paying our attention to
refutability. In refutable learning, a learner tries to learn ϐigures in the limit, but it

⁴The literature (Sakurai, 1991) was written in Japanese. The same theorem was mentioned by Muk-
ouchi and Arikawa (1995, p. 60, Theorem 3).

2.3 EXACT LEARNING OF FIGURES 27

understands that it cannot ϐind a correct hypothesis in ϐinite time, that is, outputs
the refutation symbol△ and stops if the target ϐigure is not in the considered space.

Deϐinition 2.21: Refutable learning
A learner M FĎČRĊċEĝ-Iēċ-learns FIGREFEX-INF-learning(resp. FĎČRĊċEĝ-Tĝę-learns) a set of ϐigures
ℱ ⊆ 𝒦∗ ifM satisϐies the followings. FIGREFEX-TXT-learningHere,△denotes the refutation symbol.

1. The learner M FĎČEĝ-Iēċ-learns (resp. FĎČEĝ-Tĝę-learns) ℱ.
2. If𝐾 ∈ ℱ, then for all informants (resp. texts)𝜎 of𝐾,Mఙ(𝑖) ≠ △ for all 𝑖 ∈ ℕ.
3. If𝐾 ∈ 𝒦∗⧵ℱ, then for all informants (resp. texts)𝜎 of𝐾, there exists𝑚 ∈ ℕ

such that Mఙ(𝑖) ≠ △ for all 𝑖 < 𝑚, and Mఙ(𝑖) = △ for all 𝑖 ≥ 𝑚.

Conditions 2 and 3 in the above deϐinition mean that a learner M refutes the set ℱ
in ϐinite time if and only if a target ϐigure 𝐾 ∈ 𝒦∗ ⧵ ℱ. To characterize refutable
learning, we prepare the following lemma, which is a translation of Mukouchi and
Arikawa (1995, Lemma 4).

Lemma 2.22
Suppose a learnerM FĎČRĊċEĝ-Iēċ-learns (resp. FĎČRĊċEĝ-Tĝę-learns) a set of
ϔiguresℱ, and let𝐾 ∈ 𝒦∗⧵ℱ. For every informant (resp. text)𝜎 of𝐾, ifM outputs
△ after receiving 𝜎[𝑛], then for any 𝐿 ∈ ℱ, the set of examples range(𝜎[𝑛]) is not
consistent with 𝐿.

Here we compare FĎČRĊċEĝ-Iēċ-learnability with other learning criteria.

Theorem 2.23
FĎČRĊċEĝ-Iēċ ⊈ FĎČEĝ-Tĝę and FĎČEĝ-Tĝę ⊈ FĎČRĊċEĝ-Iēċ.

Proof. First we consider FĎČRĊċEĝ-Iēċ ⊈ FĎČEĝ-Tĝę. We show an example of a
set of ϐigures ℱ with ℱ ∈ FĎČRĊċEĝ-Iēċ and ℱ ∉ FĎČEĝ-Tĝę in the case of 𝑑 = 2.
Let 𝐾଴ = 𝜅({⟨ 𝟶, 𝟶 ⟩, ⟨ 𝟷, 𝟷 ⟩}), 𝐾௜ = 𝜅({⟨𝑤,𝑤 ⟩ ∣ 𝑤 ∈ Σ௜ ⧵ {𝟷௜}}) for every 𝑖 ≥ 1, and
ℱ = {𝐾௜ ∣ 𝑖 ∈ ℕ}. Note that 𝐾଴ is the line 𝑦 = 𝑥 and 𝐾௜ ⊂ 𝐾଴ for all 𝑖 ≥ 1.

We prove that ℱ ∈ FĎČRĊċEĝ-Iēċ. If a target ϐigure 𝐾 ⊃ 𝐾଴, it is trivial that,
for any 𝐾’s informant 𝜎, the set of examples range(𝜎[𝑛]) for some 𝑛 ∈ ℕ is not
consistent with any 𝐾௜ ∈ ℱ (consider a positive example for a point 𝑥 ∈ 𝐾 ⧵ 𝐾଴).
Otherwise if𝐾 ⊂ 𝐾଴, there should exist a negative example ⟨ 𝑣, 𝑣 ⟩ ∈ Neg(𝐾). Then
we have𝐾 ≠ 𝐾௜ for all 𝑖 > |𝑣|. Thus a leaner can refute candidates {𝐾ଵ, 𝐾ଶ, … , 𝐾|௩|}
in ϐinite time. Therefore from Lemma 2.22, ℱ ∈ FĎČRĊċEĝ-Iēċ holds.

Next we show thatℱ ∉ FĎČEĝ-Tĝę. Let𝐾଴ be the target ϐigure. For any ϐinite set
of positive examples 𝒯 ⊂ Pos(𝐾଴), there exists a ϐigure 𝐾௜ ∈ ℱ such that 𝐾௜ ⊂ 𝐾଴
and 𝒯 is consistent with 𝐾௜ . Therefore it has no ϐinite tell-tale set with respect to
ℱ and hence ℱ ∉ FĎČEĝ-Tĝę from Theorem 2.9.

Second we check FĎČEĝ-Tĝę ⊈ FĎČRĊċEĝ-Iēċ. Assume that ℱ = 𝜅(ℋ{ଵ}) and
a target ϐigure 𝐾 is a singleton {𝑥} with 𝐾 ∉ ℱ. It is clear that, for any 𝐾’s in-
formant 𝜎 and 𝑛 ∈ ℕ, range(𝜎[𝑛]) is consistent with some ϐigure 𝐿 ∈ ℱ. Thus
ℱ ∉ FĎČRĊċEĝ-Iēċ whereas ℱ ∈ FĎČEĝ-Tĝę.

Theorem 2.24
FĎČRĊđEĝ-Tĝę ⊈ FĎČRĊċEĝ-Iēċ and FĎČRĊċEĝ-Iēċ ⊈ FĎČRĊđEĝ-Tĝę.

Proof. It is trivial that FĎČRĊđEĝ-Tĝę ⊈ FĎČRĊċEĝ-Iēċ since we have 𝜅(ℋ{ଵ}) ∉
FĎČRĊċEĝ-Iēċ in the above proof and𝜅(ℋ{ଵ}) ∈ FĎČRĊđEĝ-Tĝę from Theorem 2.19.

28 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

Next we consider FĎČRĊċEĝ-Iēċ ⊈ FĎČRĊđEĝ-Tĝę. We show a counterexam-
ple in the case of 𝑑 = 2. Let ℱ = {𝐾} with 𝐾 = 𝜅({⟨ 𝟶, 𝟶 ⟩, ⟨ 𝟷, 𝟷 ⟩}) and M be a
FĎČRĊđEĝ-Tĝę-learner ofℱ. Notice that the ϐigure𝐾 is the line 𝑦 = 𝑥. For simplic-
ity, in the following we assume that every text𝜎 of a ϐigure𝐾 is an inϐinite sequence
of ϐinite sequences𝑤଴, 𝑤ଵ, 𝑤ଶ, … such that {𝑤௜}௜∈ℕ = Pos(𝐾).

For a dense subset 𝑥଴, 𝑥ଵ, … of the ϐigure𝐾, deϐine 𝑋௜ = {𝑥଴, 𝑥ଵ, … , 𝑥௜ିଵ}. Then,
for each 𝑛 ∈ ℕ, there exists a preϐix 𝜎௥(௡) of a text for 𝑋௥(௡) with some monotoni-
cally increasing function 𝑟 ∶ ℕ → ℕ satisfying the following three conditions:

1. The learner M makes a mind change (changes the current hypothesis) when
it receives 𝜎௥(௡),

2. range(𝜎௥(௡)) ⊇ {𝑤 ∈ Pos(𝐾) ∣ |𝑤| ≤ 𝑛}, and
3. 𝜎௥(௡ିଵ) ⊑ 𝜎௥(௡) (with 𝑛 ≥ 1).

If 𝑛 goes to inϐinite, 𝜎௥(௡) becomes a text for 𝐾, but M’s output does not converge
to any hypothesis. Thus ℱ ∉ FĎČRĊđEĝ-Tĝę.

On the other hand, we can easily check that ℱ ∈ FĎČRĊċEĝ-Iēċ.

These results mean that both FĎČRĊċEĝ-Iēċ- and FĎČRĊđEĝ-Tĝę-learning are
difϐicult, but they are incomparable in terms of learnability. Furthermore, we have
the following hierarchy.

Theorem 2.25
FĎČRĊċEĝ-Tĝę ≠ ∅ and FĎČRĊċEĝ-Tĝę ⊂ FĎČRĊċEĝ-Iēċ.

Proof. Let a set of ϐigures ℱ be a singleton {𝐾} such that 𝐾 = 𝜅(𝑤) for some 𝑤 ∈
(Σௗ)∗. Then there exists a learner M that FĎČRĊċEĝ-Tĝę-learns ℱ, since all M has
to do is to check whether or not, for a given positive example (𝑣, 1), 𝑣 ⊑ 𝑢 for some
𝑢 ∈ Pos(𝐾) = {𝑥 ∣ 𝑥 ⊑ 𝑤𝑤𝑤…}.

Next, let ℱ = {𝐾} such that 𝐾 = 𝜅(𝐻) with #𝐻 ≥ 2. We can easily check that
ℱ ∉ FĎČRĊċEĝ-Tĝę because if a target ϐigure 𝐿 is a proper subset of 𝐾, no learner
can refuteℱ in ϐinite time. Conversely,ℱ ∈ FĎČRĊċEĝ-Iēċ since for all𝐿with𝐿 ≠ 𝐾,
there exists an example with which the hypothesis𝐻 is not consistent.

Corollary 2.26
FĎČRĊċEĝ-Tĝę ⊂ FĎČRĊđEĝ-Tĝę.

2.4 Effective Learning of Figures

In learning under the proposed criteria, i.e., explanatory, consistent, reliable, and
refutable learning, each hypothesis is just considered as exactly “correct” or not,
that is, for a target ϐigure 𝐾 and for a hypothesis 𝐻, 𝐻 is correct if GE(𝐾,𝐻) = 0
and is not correct if GE(𝐾,𝐻) ≠ 0. Thus we cannot know the rate of convergence
to the target ϐigure and how far it is from the recent hypothesis to the target. It
is therefore more useful if we consider approximate hypotheses by taking various
generalization errors into account in the learning process.generalization error

We deϐine novel learning criteria, FĎČEċEĝ-Iēċ- and FĎČEċEĝ-Tĝę-learning (EF
means EFfective), to introduce into learning the concept of effectivity, which haseffectivity
been analyzed in computation of real numbers in the area of computable analysis
(Weihrauch, 2000). Intuitively, these criteria guarantee that for any target ϐigure,
a generalization error becomes smaller and smaller monotonically and converges

2.4 EFFECTIVE LEARNING OF FIGURES 29

to zero. Thus we can know when the learner learns the target ϐigure “well enough”.
Furthermore, if a target ϐigure is learnable in the limit, then the generalization er-
ror goes to zero in ϐinite time.

Deϐinition 2.27: Effective learning
A learnerMFĎČEċEĝ-Iēċ-learns FIGEFEX-INF-learning(resp. FĎČEċEĝ-Tĝę-learns) a set of ϐiguresℱ ⊆
𝒦∗ if M satisϐies the following conditions: FIGEFEX-TXT-learning

1. The learner M FĎČEĝ-Iēċ-learns (resp. FĎČEĝ-Tĝę-learns) ℱ.
2. For an arbitrary target ϐigure 𝐾 ∈ 𝒦∗ and all informants (resp. texts) 𝜎 of
𝐾, for all 𝑖 ∈ ℕ,

GE(𝐾,Mఙ(𝑖)) ≤ 2ି௜ .

This deϐinition is inspired by the Cauchy representation (Weihrauch, 2000, Deϐini-
tion 4.1.5) of real numbers.

Effective learning is related tomonotonic learning (Lange and Zeugmann, 1993,
1994; Kinber, 1994; Zeugmann et al., 1995) originally introduced by Jantke (1991)
and Wiehagen (1991), since both learning models consider monotonic conver-
gence of hypotheses. In contrast to their approach, where various monotonicity
over languages was considered, we geometrically measure the generalization er-
ror of a hypothesis by the Hausdorff metric. On the other hand, the effective learn-
ing is different fromBĈ-learning developed in the learning of languages and recur-
sive functions (Jain et al., 1999b) since BĈ-learning only guarantees that general-
ization errors go to zero in ϐinite time. This means thatBĈ-learning is not effective.

First we show that we can bound the generalization error of the hypothesis 𝐻
using the diameter diam(𝑘) of the set 𝜌(𝑤) with |𝑤| = 𝑘. Recall that we have

diam(𝑘) = √𝑑 ⋅ 2ି௞

(see proof of Lemma 2.3). In the following, we denote by 𝐸௞ the set of examples
{(𝑤, 𝑙) ∣ |𝑤| = 𝑘} in 𝜎 and call each example in it a level-𝑘 example. level-k example

Lemma 2.28
Let 𝜎 be an informant of a ϔigure 𝐾 and 𝐻 be a hypothesis that is consistent with
the set of examples 𝐸௞ = {(𝑤, 𝑙) ∣ |𝑤| = 𝑘}. We have the inequality

GE(𝐾,𝐻) ≤ diam(𝑘).

Proof. Since 𝐻 is consistent with 𝐸௞ ,

𝜅(𝐻) ∩ 𝜌(𝑤) ൝≠ ∅ if (𝑤, 1) ∈ 𝐸௞ ,
= ∅ if (𝑤, 0) ∈ 𝐸௞ .

For 𝛿 = diam(𝑘), the 𝛿-neighborhood of 𝜅(𝐻) contains𝐾 and the 𝛿-neighborhood
of 𝐾 contains 𝜅(𝐻). Thus it follows that GE(𝐾,𝐻) = 𝑑H(𝐾, 𝜅(𝐻)) ≤ diam(𝑘).

Theorem 2.29
The set of ϔigures 𝜅(ℋ) is FĎČEċEĝ-Iēċ-learnable.

30 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

Proof. We show the pseudo-code ofM that FĎČEċEĝ-Iēċ-learns 𝜅(ℋ) in Procedure
2.3. We use the function

𝑔(𝑘) = ⌈ 𝑘 + logଶ √𝑑 ⌉.

Then for all 𝑘 ∈ ℕ, we have

diam(𝑔(𝑘)) = √𝑑 ⋅ 2ି௚(௞) ≤ 2ି௞ .

The learnerM stores examples, and when it receives all examples at the level 𝑔(𝑘),
it outputs a hypothesis. Every 𝑘th hypothesis Mఙ(𝑘) is consistent with the set of
examples 𝐸௚(௞). Thus we have

GE(𝐾,Mఙ(𝑘)) ≤ diam(𝑔(𝑘)) ≤ 2ି௞

for all 𝑘 ∈ ℕ from Lemma 2.28.
Assume that𝐾 ∈ 𝜅(ℋ). IfM outputs a wrong hypothesis, there must be a posi-

tive or negative example that is not consistent with the hypothesis, and it changes
the wrong hypothesis. If it produces a correct hypothesis, then it never changes the
correct hypothesis, since every example is consistent with the hypothesis. Thus
there exists 𝑛 ∈ ℕwith GE(𝐾,Mఙ(𝑖)) = 0 for all 𝑖 ≥ 𝑛. Therefore, M FĎČEċEĝ-Iēċ-
learns 𝜅(ℋ).

Corollary 2.30
FĎČEċEĝ-Iēċ = FĎČRĊđEĝ-Iēċ = FĎČEĝ-Iēċ.

The learner with Procedure 2.3 can treat the set of all ϐigures 𝒦∗ as learning tar-
gets, since for any ϐigure 𝐾 ∈ 𝒦∗, it can approximate the ϐigure arbitrarily closely
using only the ϐigures represented by hypotheses in the hypothesis spaceℋ.

In contrast toFĎČEĝ-Tĝę-learning, there is no set of ϐigures that isFĎČEċEĝ-Tĝę-
learnable.

Theorem 2.31
FĎČEċEĝ-Tĝę = ∅.

Proof. We show a counterexample of a target ϐigure which no learner M can ap-
proximate effectively. Assume that 𝑑 = 2 and a learner M FĎČEċEĝ-Tĝę-learns
a set of ϐigures ℱ ⊆ 𝒦∗. Let us consider two target ϐigures 𝐾 = {(0, 0), (1, 1)}
and 𝐿 = {(0, 0)}. For 𝐿’s text 𝜎, for all examples (𝑤, 1) ∈ range(𝜎), 𝑤 ∈ {𝟶𝟶}∗.
Since M FĎČEċEĝ-Tĝę-learns ℱ, it should output the hypothesis 𝐻 as Mఙ(2) such
that GE(𝐿, 𝐻) < 1/4. Suppose that M receives 𝑛 examples before outputting the
hypothesis 𝐻. Then there exists a presentation 𝜏 of the ϐigure 𝐾 such that 𝜏[𝑛 −
1] = 𝜎[𝑛 − 1], and M outputs the hypothesis 𝐻 with receiving 𝜏[𝑛 − 1]. However,
GE(𝐾, 𝐻) ≥ √2−1/4 holds from the triangle inequality, contradicting our assump-
tion that M FĎČEċEĝ-Tĝę-learns ℱ. This proof can be applied for any ℱ ⊆ 𝒦∗,
thereby we have FĎČEċEĝ-Tĝę = ∅.

Since FĎČRĊċEĝ-Tĝę ≠ ∅, we have the relation

FĎČEċEĝ-Tĝę ⊂ FĎČRĊċEĝ-Tĝę.

This result means that we cannot learn any ϐigures “effectively” by using only pos-
itive examples.

2.5 EVALUATION OF LEARNING USING DIMENSIONS 31

Procedure 2.3: Learning procedure that FĎČEċEĝ-Iēċ-learns 𝜅(ℋ)

Input: Informant 𝜎 = (𝑤଴, 𝑙଴), (𝑤ଵ, 𝑙ଵ), … of ϐigure 𝐾 ∈ 𝜅(ℋ)
Output: Inϐinite sequence of hypotheses Mఙ(0),Mఙ(1), …

1: 𝑖 ← 0
2: 𝑘 ← 0
3: 𝐸 ← ∅ // 𝐸 is a set of received examples
4: repeat
5: read 𝜎(𝑖) and add to 𝐸 // 𝜎(𝑖) = (𝑤௜ , 𝑙௜)
6: if 𝐸௚(௞) ⊆ 𝐸 then

// 𝐸௚(௞) = {(𝑤, 𝑙) ∈ range(𝜎) ∣ |𝑤| = 𝑔(𝑘)}
// 𝑔(𝑘) = ⌈ 𝑘 + logଶ √𝑑 ⌉

7: search the ϐirst 𝐻 that is consistent with 𝐸
through a normal enumeration

8: output 𝐻 // Mఙ(𝑖) = 𝐻
9: 𝑘 ← 𝑘 + 1

10: end if
11: 𝑖 ← 𝑖 + 1
12: until forever

2.5 Evaluation of Learning Using Dimensions

Here we show a novel mathematical connection between fractal geometry and
Gold-style learning under the proposed learning model described in Section 2.2.
More precisely, we measure the number of positive examples, one of the com-
plexities of learning, using the Hausdorff dimension and the VC dimension. The
Hausdorff dimension is known as the central concept of fractal geometry, which
measures the density of ϐigures, and VC dimension is the central concept of the
Valiant-style learning model (PAC learning model) (Kearns and Vazirani, 1994),
which measures the complexity of classes of hypotheses.

2.5.1 Preliminaries for Dimensions

First we introduce the Hausdorff and related dimensions: the box-counting dimen-
sion, the similarity dimension, and the VC dimension.

For 𝑋 ⊆ ℝௗ and 𝑠 ∈ ℝ with 𝑠 > 0, deϐine

ℌ௦
ఋ(𝑋) ≔ inf ቐ ෍

௎∈𝒰
|𝑈|௦ ቮ 𝒰 is a 𝛿-cover of 𝑋 ቑ .

The 𝑠-dimensional Hausdorff measure of 𝑋 is limఋ→଴ ℌ௦
ఋ(𝑋), denoted by ℌ௦(𝑋). We s-dimensional Hausdorff measure

say that 𝒰 is a 𝛿-cover of 𝑋 if 𝒰 is countable, 𝑋 ⊆ ⋃௎∈𝒰 𝑈, and |𝑈| ≤ 𝛿 for all
𝑈 ∈ 𝒰. When we ϐix a set𝑋 and viewℌ௦(𝑋) as a function with respect to 𝑠, it has at
most one value where the value ℌ௦(𝑋) changes from ∞ to 0 (Federer, 1996). This
value is called the Hausdorff dimension of 𝑋. Formally, the Hausdorff dimension of Hausdorff dimension

32 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

a set 𝑋, written as dimH 𝑋, is deϐined by

dimH 𝑋 ≔ sup ൛ 𝑠 ห ℌ௦(𝑋) = ∞ ൟ = inf ൛ 𝑠 ≥ 0 ห ℌ௦(𝑋) = 0 ൟ .

The box-counting dimension, also known as the Minkowski-Bouligand dimen-
sion, is one of widely used dimensions since its mathematical calculation and em-
pirical estimation are relatively easy compared to the Hausdorff dimension. More-
over, if we try to calculate the box-counting dimension, which is given as the limit of
the following equation (2.10) by decreasing 𝛿, the obtained values often converge
to the Hausdorff dimension at the same time. Thus we can obtain an approximate
value of the Hausdorff dimension by an empirical method. Let 𝑋 be a nonempty
bounded subset ofℝௗ and𝑁ఋ(𝑋) be the smallest cardinality of a 𝛿-cover of𝑋. The
box-counting dimension

box-counting dimension
dimB 𝑋 of 𝑋 is deϐined by

dimB 𝑋 ≔ lim
ఋ→଴

log𝑁ఋ(𝑋)
− log 𝛿 (2.10)

if this limit exists. We have

dimH 𝑋 ≤ dimB 𝑋

for all 𝑋 ⊆ ℝௗ .
It is usually difϐicult to ϐind the Hausdorff dimension of a given set. However,

we can obtain the dimension of a certain class of self-similar sets in the following
manner. Let 𝐶 be a ϐinite set of contractions, and 𝐹 be the self-similar set of 𝐶. The
similarity dimension of 𝐹, denoted by dimS 𝐹, is deϐined by the equationsimilarity dimension

෍
େ୘∈஼

𝐿(CT)dimS ி = 1,

where 𝐿(CT) is the contractivity factor of CT, which is deϐined by the inϐimum ofcontractivity factor
all real numbers 𝑐 with 0 < 𝑐 < 1 such that 𝑑(CT(𝑥), CT(𝑦)) ≤ 𝑐𝑑(𝑥, 𝑦) for all
𝑥, 𝑦 ∈ 𝑋. We have

dimH 𝐹 ≤ dimS 𝐹

and if 𝐶 satisϐies the open set condition,

dimH 𝐹 = dimB 𝐹 = dimS 𝐹

(Falconer, 2003). Here, a ϐinite set of contractions𝐶 satisϐies the open set conditionopen set condition
if there exists a nonempty bounded open set 𝑂 ⊂ ℝௗ such that CT(𝑂) ⊂ 𝑂 for all
CT ∈ 𝐶 and CT(𝑂) ∩ CTᇱ(𝑂) = ∅ for all CT, CTᇱ ∈ 𝐶 with CT ≠ CTᇱ.

Intuitively, the VC dimension (Vapnik and Chervonenkis, 1971; Valiant, 1984)
is a parameter of separability, which gives lower and upper bounds for the sample
size in the Valiant-style, or PAC, learning model (Kearns and Vazirani, 1994). For
all ℛ ⊆ ℋ and 𝑊 ⊆ Σ∗, deϐine

Πℛ(𝑊) ≔ { Pos(𝜅(𝐻)) ∩𝑊 ห 𝐻 ∈ ℛ } .

If Πℛ(𝑊) = 2ௐ , we say that 𝑊 is shattered by ℛ. Here the VC dimension of ℛ,VC dimension
denoted by dimVC ℛ, is the cardinality of the largest set 𝑊 shattered by ℛ.

2.5 EVALUATION OF LEARNING USING DIMENSIONS 33

2.5.2 Measuring the Complexity of Learning with Dimensions

We show that the Hausdorff dimension of a target ϐigure gives a lower bound to the
number of positive examples. Remember that Pos௞(𝐾) = {𝑤 ∈ Pos(𝐾) ∣ |𝑤| = 𝑘}
and the diameter diam(𝑘) of the set 𝜌(𝑤)with |𝑤| = 𝑘 is √𝑑2ି௞ . Moreover, for all
𝑘 ∈ ℕ, #{𝑤 ∈ (Σௗ)∗ ∣ |𝑤| = 𝑘} = 2௞ௗ .

Theorem 2.32
For every ϔigure 𝐾 ∈ 𝒦∗ and for any 𝑠 < dimH 𝐾, if we take 𝑘 large enough,

#Pos௞(𝐾) ≥ 2௞௦ .

Proof. Fix 𝑠 < dimH 𝐾. From the deϐinition of the Hausdorff measure,

ℌ௦
diam(௞)(𝐾) ≤ #Pos௞(𝐾) ⋅ (√𝑑2ି௞)௦

since diam(𝑘) = √𝑑2ି௞ . If we take 𝑘 large enough,

ℌ௦
diam(௞)(𝐾) ≥ (√𝑑)௦

becauseℌ௦
ఋ(𝐾) is monotonically increasing with decreasing 𝛿, and goes to∞. Thus

#Pos௞(𝐾) ≥ ℌ௦
diam(௞)(𝐾)(√𝑑2

ି௞)ି௦ ≥ (√𝑑)௦(√𝑑2ି௞)ି௦ = 2௞௦

holds.
Moreover, if a target ϐigure 𝐾 can be represented by some hypothesis, that is,

𝐾 ∈ 𝜅(ℋ), we can use the exact dimension dimH 𝐾 as a bound for the number
#Pos௞(𝐾). We use the mass distribution principle (Falconer, 2003, Mass distribu- mass distribution principle
tion principle 4.2): Let 𝜇 be a mass distribution, which is a measure on a bounded
subset of ℝௗ satisfying 0 < 𝜇(ℝௗ) < ∞, over 𝐾. Assume that for some 𝑠 there
exists 𝑐 > 0 and 𝜀 > 0 such that 𝜇(𝑈) ≤ 𝑐|𝑈|௦ holds for all sets 𝑈 with |𝑈| < 𝜀.
Then we have ℌ௦(𝐾) ≥ 𝜇(𝐾)/𝑐.

Theorem 2.33
For every ϔigure 𝐾 ∈ 𝜅(ℋ) with 𝐾 = 𝜅(𝐻), if we take 𝑘 large enough,

#Pos௞(𝐾) ≥ 2௞ dimH ௄ .

Proof. From the deϐinition of the Hausdorff measure,

ℌdimH ௄
diam(௞)(𝐾) ≤ #Pos௞(𝐾) ⋅ (√𝑑2ି௞)dimH ௄ .

Let𝜇 be a mass distribution such that 𝜇(𝜌(𝑤)) = 2ି௞ௗ for each𝑤 ∈ (Σௗ)௞ . Assume
that

𝑐 = (√𝑑)ିdimH ௄ .
We have

𝜇(𝜌(𝑤)) = 2ି௞ௗ ≤ 𝑐 ⋅ diam(𝑘)dimH ௄ = √𝑑
ିdimH ௄

⋅ ቀ√𝑑2ି௞ቁ
dimH ௄

= 2ି௞dimH ௄ .

34 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

Figure 2.4 | Positive and negative ex-
amples for the Sierpiński triangle at
level 1 and 2. White (resp. gray)
squares mean positive (resp. nega-
tive) examples.

1

10
0

1

10
0

Thus from the mass distribution principle,

ℌdimH ௄(𝐾) ≥ 1/𝑐 = (√𝑑)dimH ௄ .

Therefore if we take 𝑘 large enough,

#Pos௞(𝐾) ≥ ℌdimH ௄
diam(௞)(𝐾)(√𝑑2

ି௞)ିdimH ௄ ≥ (√𝑑)dimH ௄(√𝑑2ି௞)ିdimH ௄

= 2௞dimH ௄

holds.

Example 2.34
Let us consider the ϐigure𝐾 in Example 2.1. It is known that dimH 𝐾 = log 3/ log 2 =
1.584… . From Theorem 2.33,

Posଵ(𝐾) ≥ 2dimH ௄ = 3

holds at level 1 and

Posଶ(𝐾) ≥ 4dimH ௄ = 9

holds at level 2. Actually, Posଵ(𝐾) = 4 and Posଶ(𝐾) = 13. Note that 𝐾 is already
covered by 3 and 9 intervals at level 1 and 2, respectively (Figure 2.4).

The VC dimension can also be used to characterize the number of positive ex-
amples. Deϐine

ℋ௞ ≔ { 𝐻 ∈ ℋ | |𝑤| = 𝑘 for all 𝑤 ∈ 𝐻 } ,

and call each hypothesis in the set a level-𝑘 hypothesis. We show that the VC dimen-
sion of the set of level 𝑘 hypothesesℋ௞ is equal to #{𝑤 ∈ (Σௗ)∗ ∣ |𝑤| = 𝑘} = 2௞ௗ .

Lemma 2.35
At each level 𝑘, we have dimVC ℋ௞ = 2௞ௗ .

Proof. First of all,

dimVC ℋ௞ ≤ 2௞ௗ

is trivial since #ℋ௞ = 2ଶ
ೖ೏

. Let ℋ௞
௡ denote the set {𝐻 ∈ ℋ௞ ∣ #𝐻 = 𝑛}. For all

𝐻 ∈ ℋ௞
ଵ , there exists 𝑤 ∈ Pos(𝜅(𝐻)) such that 𝑤 ∉ Pos(𝜅(𝐺)) for all 𝐺 ∈ ℋ௞

ଵ
with 𝐻 ≠ 𝐺. Thus if we assume ℋ௞

ଵ = {𝐻ଵ, … , 𝐻ଶೖ೏}, there exists the set of ϐinite

2.5 EVALUATION OF LEARNING USING DIMENSIONS 35

sequences 𝑊 = {𝑤ଵ, … , 𝑤ଶೖ೏} such that for all 𝑖 ∈ {1, … , 2௞ௗ}, 𝑤௜ ∈ Pos(𝜅(𝐻௜))
and𝑤௜ ∉ Pos(𝜅(𝐻௝)) for all 𝑗 ∈ {1, … , 2௞ௗ}with 𝑖 ≠ 𝑗. For every pair𝑉,𝑊 ⊂ (Σௗ)∗,
𝑉 ⊂ 𝑊 implies 𝜅(𝑉) ⊂ 𝜅(𝑊). Therefore the set 𝑊 is shattered by ℋ௞ , meaning
that we have dimVC ℋ௞ = 2௞ௗ .

Therefore we can rewrite Theorems 2.32 and 2.33 as follows.

Theorem 2.36
For every ϔigure 𝐾 ∈ 𝒦∗ and for any 𝑠 < dimH 𝐾, if we take 𝑘 large enough,

#Pos௞(𝐾) ≥ (dimVC ℋ௞)௦/ௗ .

Moreover, if 𝐾 ∈ 𝜅(ℋ) with 𝐾 = 𝜅(𝑊), if we take 𝑘 large enough,

#Pos௞(𝐾) ≥ (dimVC ℋ௞)dimH ௄/ௗ .

These results demonstrate a relationship among the complexities of learning ϐig-
ures (numbers of positive examples), classes of hypotheses (VC dimension), and
target ϐigures (Hausdorff dimension).

2.5.3 Learning the Box-Counting Dimension Effectively

One may think that FĎČEċEĝ-Iēċ-learning can be achieved without the proposed
hypothesis space, since if a learner just outputs ϐigures represented by a set of re-
ceived positive examples, the generalization error becomes smaller and smaller.
Here we show that one “quality” of a target ϐigure, the box-counting dimension,
is also learned in FĎČEċEĝ-Iēċ-learning, whereas if a learner outputs ϐigures rep-
resented by a set of received positive examples, the box-counting dimension (and
also the Hausdorff dimension) of any ϐigure is always 𝑑.

Recall that for all hypotheses 𝐻 ∈ ℋ, dimH 𝜅(𝐻) = dimB 𝜅(𝐻) = dimS 𝜅(𝐻),
since the set of contractions encoded by𝐻 meets the open set condition.

Theorem 2.37
Assume that a learnerMFĎČEċEĝ-Iēċ-learns𝜅(ℋ). For all target ϔigures𝐾 ∈ 𝒦∗,

lim
௞→ஶ

dimB 𝜅(Mఙ(𝑘)) = dimB 𝐾.

Proof. First, we assume that a target ϐigure𝐾 ∈ 𝜅(ℋ). For every informant 𝜎 of𝐾,
Mఙ converges to a hypothesis𝐻 with 𝜅(𝐻) = 𝐾. Thus

lim
௞→ஶ

dimB 𝜅(Mఙ(𝑘)) = dimB 𝐾 = dimH 𝐾.

Next, we assume 𝐾 ∈ 𝒦∗ ⧵ 𝜅(ℋ). Since GE(𝐾,Mఙ(𝑖)) ≤ 2ି௜ holds for every
𝑖 ∈ ℕ, for each 𝑘 ∈ ℕ, we have some 𝑖 ≥ 𝑘 such that the hypothesis Mఙ(𝑖) is
consistent with the set of level-𝑘 examples 𝐸௞ = {(𝑤, 𝑙) ∈ range(𝜎) ∣ |𝑤| = 𝑘}.
Thus

dimS 𝜅(Mఙ(𝑖)) = dimB 𝜅(Mఙ(𝑖)) =
log #Pos௞(𝐾)
− log 2ି௞

.

36 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

Falconer (2003) shows that the box-counting dimension dimB 𝐾 is deϐined equiv-
alently by

dimB 𝐾 = lim
௞→ஶ

log #Pos௞(𝐾)
− log 2ି௞

,

where 2ି௞ is the length of one side of an interval 𝜌(𝑤) with |𝑤| = 𝑘. Therefore
from the deϐinition of the box-counting dimension,

lim
௜→ஶ

dimH 𝜅(Mఙ(𝑖)) = lim
௞→ஶ

log #Pos௞(𝐾)
− log 2ି௞

= dimB 𝐾

holds.

2.6 Computational Interpretation of Learning

Recently, the notion of “computability” for continuous objects has been introduced
(Schröder, 2002a; Weihrauch, 2000, 2008; Weihrauch and Grubba, 2009; Tavana
and Weihrauch, 2011) in the framework of Type-2 Theory of Effectivity (TTE),
where we treat an uncountable set 𝑋 as objects for computing through inϐinite
sequences over a given alphabet Σ. Using the framework, we analyze our learn-
ing model from the computational point of view. Some studies by de Brecht and
Yamamoto (2009); de Brecht (2010) have already demonstrated a close connec-
tion between TTE and the Gold-style learning model, and our analysis becomes an
instance and extension of their analysis.

2.6.1 Preliminaries for Type-2 Theory of Effectivity

First, we prepare mathematical notations for TTE. In the following in this section,
we assume Σ = {𝟶, 𝟷, [,], ‖}. A partial (resp. total) function 𝑔 from a set 𝐴 to a set
𝐵 is denoted by 𝑔 ∶⊆ 𝐴 → 𝐵 (resp. 𝑔 ∶ 𝐴 → 𝐵). A representation of a set 𝑋 is arepresentation
surjection 𝜉 ∶⊆ 𝐶 → 𝑋, where 𝐶 is Σ∗ or Σఠ . We see 𝑝 ∈ dom(𝜉) as a name of the
encoded element 𝜉(𝑝).

Computability of string functions 𝑓 ∶⊆ 𝑋 → 𝑌, where 𝑋 and 𝑌 are Σ∗ or Σఠ , is
deϐined via a Type-2machine, which is a usual Turing machine with one-way inputType-2 machine
tapes, some work tapes, and a one-way output tape (Weihrauch, 2000). The func-
tion 𝑓ெ ∶⊆ 𝑋 → 𝑌 computed by a Type-2 machine 𝑀 is deϐined as follows: When
𝑌 is Σ∗, 𝑓ெ(𝑝) ≔ 𝑞 if 𝑀 with input 𝑝 halts with 𝑞 on the output tape, and when
𝑌 is Σఠ , 𝑓ெ(𝑝) ≔ 𝑞 if 𝑀 with input 𝑝 writes step by step 𝑞 onto the output tape.
We say that a function 𝑓 ∶⊆ 𝐶 → 𝐷 is computable if there is a Type-2 machine thatcomputability
computes 𝑓, and a ϐinite or inϐinite sequence 𝑝 is computable if the constant func-
tion 𝑓 which outputs 𝑝 is computable. A Type-2 machine never changes symbols
that have already been written onto the output tape, thus each preϐix of the output
depends only on a preϐix of the input.

By treating a Type-2 machine as a translator between names of some objects,
a hierarchy of representations is introduced. A representation 𝜉 is reducible to 𝜁,
denoted by 𝜉 ≤ 𝜁, if there exists a computable function 𝑓 such that 𝜉(𝑝) = 𝜁(𝑓(𝑝))
for all 𝑝 ∈ dom(𝜉). Two representations 𝜉 and 𝜁 are equivalent, denoted by 𝜉 ≡ 𝜁,equivalent
if both 𝜉 ≤ 𝜁 and 𝜁 ≤ 𝜉 hold. As usual, 𝜉 < 𝜁 means 𝜉 ≤ 𝜁 and not 𝜁 ≤ 𝜉.

Computability for functions is deϐined through representations and computabil-
ity of string functions.

2.6 COMPUTATIONAL INTERPRETATION OF LEARNING 37

Deϐinition 2.38: Computability and realization
Let 𝜉 and 𝜁 be representations of 𝑋 and 𝑌, respectively. An element 𝑥 ∈ 𝑋 is
𝜉-computable 𝜉-computableif there is some computable 𝑝 such that 𝜉(𝑝) = 𝑥. A function
𝑓 ∶⊆ 𝑋 → 𝑌 is (𝜉, 𝜁)-computable (𝜉, 𝜁)-computableif there is some computable 𝑔 such that

𝑓 ∘ 𝜉(𝑝) = 𝜁 ∘ 𝑔(𝑝)

for all 𝑝 ∈ dom(𝜉). This 𝑔 is called a (𝜉, 𝜁)-realization (𝜉, 𝜁)-realizationof 𝑓.

Thus the abstract function 𝑓 is “realized” by the concrete function (Type-2 ma-
chine) 𝑔 through the two representations 𝜉 and 𝜁.

Various representations of the set of nonempty compact sets𝒦∗ are well stud-
ied by Brattka and Weihrauch (1999); Brattka and Presser (2003). Let

𝒬 = ቄ 𝐴 ⊂ ℚௗ ቚ 𝐴 is ϐinite and nonempty ቅ

and deϐine a representation 𝜈𝒬 ∶⊆ Σ∗ → 𝒬 by

𝜈𝒬([𝑤଴‖𝑤ଵ‖…‖𝑤௡]) ≔ {𝜈ℚ೏(𝑤଴), 𝜈ℚ೏(𝑤ଵ), … , 𝜈ℚ೏(𝑤௡)},

where 𝜈ℚ೏ ∶⊆ (Σௗ)∗ → ℚௗ is the standard binary notation of rational numbers
deϐined by

𝜈ℚ೏(⟨𝑤ଵ, 𝑤ଶ, … , 𝑤ௗ ⟩)

≔ ൮
|௪భ|ିଵ

෍
௜ୀ଴

𝑤ଵ
௜ ⋅ 2

ି(௜ାଵ),
|௪మ|ିଵ

෍
௜ୀ଴

𝑤ଶ
௜ ⋅ 2

ି(௜ାଵ), … ,
|௪೏|ିଵ

෍
௜ୀ଴

𝑤ௗ
௜ ⋅ 2

ି(௜ାଵ)൲

and “[”, “]”, and “‖” are special symbols used to separate two ϐinite sequences. For a
ϐinite set of ϐinite sequences {𝑤଴, … , 𝑤௠}, for convenience we introduce the map-
ping 𝜄 which translates the set into a ϐinite sequence deϐined by 𝜄(𝑤଴, … , 𝑤௠) ≔
[𝑤଴‖…‖𝑤௠]. Note that 𝜈ℚ೏(⟨𝑤ଵ, … , 𝑤ௗ ⟩) = (min 𝜌(𝑤ଵ), … , min𝜌(𝑤ௗ)) for our
representation 𝜌 introduced in equation (2.2). The standard representation of the
topological space (𝒦∗, 𝑑H), given by Brattka and Weihrauch (1999, Deϐinition 4.8),
is deϐined in the following manner.

Deϐinition 2.39: Standard representation of ϐigures
Deϐine the representation 𝜅H ∶⊆ Σఠ → 𝒦∗ of ϐigures by 𝜅H(𝑝) = 𝐾 if 𝑝 =
𝑤଴‖𝑤ଵ‖𝑤ଶ‖… ,

𝑑H(𝐾, 𝜈𝒬(𝑤௜)) < 2ି௜

for each 𝑖 ∈ ℕ, and lim௜→ஶ 𝜈𝒬(𝑤௜) = 𝐾.

Note that the topology on 𝒦∗ induced by the Hausdorff metric 𝑑H coincides with
the Vietoris topology on 𝒦∗ (Beer, 1993). This representation 𝜅H is known to be Vietoris topology
an admissible representation of the space (𝒦∗, 𝑑H), which is the key concept in TTE admissible representation
(Schröder, 2002a; Weihrauch, 2000), and is also known as the Σ0

1-admissible rep-
resentation proposed by de Brecht and Yamamoto (2009).

38 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

2.6.2 Computability and Learnability of Figures

First, we show computability of ϐigures in 𝜅(ℋ).

Theorem 2.40
For every ϔigure 𝐾 ∈ 𝜅(ℋ), 𝐾 is 𝜅H-computable.

Proof. It is enough to prove that there exists a computable function 𝑓 such that
𝜅(𝐻) = 𝜅H(𝑓(𝐻)) for all 𝐻 ∈ ℋ. Fix a hypothesis 𝐻 ∈ ℋ such that 𝜅(𝐻) = 𝐾. For
all 𝑘 ∈ ℕ and for 𝐻௞ deϐined by

𝐻௞ ≔ ቄ 𝑤 ∈ (Σௗ)∗ ቚ 𝑤 ⊑ 𝑣 with 𝑣 ∈ 𝐻௠ for some𝑚, and |𝑤| = 𝑘 ቅ ,

we can easily check that

𝑑H(𝐾, 𝜈𝒬(𝜄(𝐻௞))) < diam(𝑘) = √𝑑 ⋅ 2ି௞ .

Moreover, for each 𝑘, √𝑑 ⋅ 2ି௚(௞) < 2ି௞ , where

𝑔(𝑘) = ⌈𝑘 + logଶ √𝑑⌉.

Therefore there exists a computable function 𝑓 which translates 𝐻 into a repre-
sentation of 𝐾 given as follows: 𝑓(𝐻) = 𝑝 such that 𝑝 = 𝑤଴‖𝑤ଵ‖… such that
𝜄(𝐻௚(௞)) = 𝑤௞ for all 𝑘 ∈ ℕ.

Thus a hypothesis𝐻 can be viewed as a “code” of a Type-2 machine that produces
a 𝜅H-representation of the ϐigure 𝜅(𝐻).

Both informants and texts are also representations (in the sense of TTE) of
compact sets. Deϐine the mapping 𝜂INF by 𝜂INF(𝜎) ≔ 𝐾 for every 𝐾 ∈ 𝒦∗ and
informant 𝜎 of𝐾, and the mapping 𝜂TXT by 𝜂TXT(𝜎) ≔ 𝐾 for every𝐾 ∈ 𝒦∗ and text
𝜎 of𝐾. Trivially 𝜂INF < 𝜂TXT holds, that is, some Type-2 machine can translate 𝜂INF
to 𝜂TXT, but no machine can translate 𝜂TXT to 𝜂INF. Moreover, we have the following
hierarchy of representations.

Lemma 2.41
𝜂INF < 𝜅H , 𝜂TXT ≰ 𝜅H , and 𝜅H ≰ 𝜂TXT.

Proof. First we prove 𝜂INF ≤ 𝜅H, that is, there is some computable function 𝑓 such
that 𝜂INF(𝜎) = 𝜅H(𝑓(𝜎)). Fix a ϐigure 𝐾 and its informant 𝜎 ∈ dom(𝜂INF). For all
𝑘 ∈ ℕ, we have

𝑑H(𝐾, Pos௞(𝐾)) ≤ diam(𝑘) = √𝑑 ⋅ 2ି௞

and Pos௞(𝐾) can be obtained from 𝜎. Moreover, for each 𝑘, √𝑑 ⋅ 2ି௚(௞) < 2ି௞ ,
where

𝑔(𝑘) = ⌈𝑘 + logଶ √𝑑⌉.

Therefore there exists a computable function 𝑓 that translates 𝜎 into a representa-
tion of𝐾 as follows: 𝑓(𝜎) = 𝑝, where 𝑝 = 𝑤଴‖𝑤ଵ‖… such that𝑤௞ = 𝜄(Pos௚(௞)(𝐾))
for all 𝑘 ∈ ℕ.

Second, we prove 𝜂TXT ≰ 𝜅H. Assume that the opposite, 𝜂TXT ≤ 𝜅H holds. Then
there exists a computable function 𝑓 such that 𝜂TXT(𝜎) = 𝜅H(𝑓(𝜎)) for every ϐigure

2.6 COMPUTATIONAL INTERPRETATION OF LEARNING 39

𝐾 ∈ 𝒦∗. Fix a ϐigure 𝐾 and its text 𝜎 ∈ dom(𝜂TXT). This means that for any small
𝜀 ∈ ℝ, 𝑓 can ϐind a preϐix 𝜎[𝑚] such that 𝑑H(𝐾, 𝐼) ≤ 𝜀, where 𝐼 = {𝜌(𝑤) ∣ (𝑤, 1) ∈
range(𝜎[𝑚])}. However, since 𝜎 contains only positive examples, no computable
function can ϐind such 𝑚. It follows that 𝜂TXT ≰ 𝜅H.

Third, we prove 𝜅H ≰ 𝜂INF and 𝜅H ≰ 𝜂TXT. There is a ϐigure 𝐾 such that
𝐾 ∩ 𝜌(𝑤) = {𝑥} for some 𝑤 ∈ Σ∗, i.e., 𝐾 and 𝜌(𝑤) intersect in only one point 𝑥.
Such a 𝑤 must be in 𝜎 as a positive example, that is, 𝑤 ∈ Pos(𝐾). However, a rep-
resentation of 𝐾 can be constructed without 𝑤. There exists an inϐinite sequence
𝑝 ∈ 𝜅H with 𝑝 = 𝑤଴‖𝑤ଵ‖… such that 𝑥 ∉ 𝜈𝒬(𝑤௞) for all 𝑘 ∈ ℕ. Therefore there
is no computable function that outputs an example (𝑤, 1) from 𝑝, meaning that
𝜅H ≰ 𝜂INF and 𝜅H ≰ 𝜂TXT.

Here we interpret learningof ϐigures as computationbased on TTE. If we see the
output of a learner, i.e., an inϐinite sequence of hypotheses, as an inϐinite sequence
encoding a ϐigure, the learner can be viewed as a translator of codes of ϐigures. Nat-
urally, we can assume that the hypothesis space ℋ is a discrete topological space,
that is, every hypothesis 𝐻 ∈ ℋ is isolated and is an open set itself. Deϐine the
mapping limℋ ∶ ℋఠ → ℋ, where ℋఠ is the set of inϐinite sequences of hypothe-
ses inℋ, by limℋ(𝜏) ≔ 𝐻 if 𝜏 is an inϐinite sequence of hypotheses that converges
to 𝐻, i.e., there exists 𝑛 ∈ ℕ such that 𝜏(𝑖) = 𝜏(𝑛) for all 𝑖 ≥ 𝑛. This coincides with
the naïve Cauchy representation given by Weihrauch (2000) and Σ0

2-admissible rep- naïve Cauchy representation
resentation of hypotheses introduced by de Brecht and Yamamoto (2009). For any Σ02-admissible representationset ℱ ⊆ 𝒦∗, let ℱୈ denote the space ℱ equipped with the discrete topology, that
is, every subset of ℱ is open, and the mapping idℱ ∶ ℱ → ℱୈ be the identity on
ℱ. The computability of this identity is not trivial, since the topology ofℱୈ is ϐiner
than that of ℱ. Intuitively, this means that ℱୈ has more informative than ℱ. We
can interpret learnability of ℱ as computability of the identity idℱ . The results in
the following are summarized in Figure 2.5.

Theorem 2.42
A set ℱ ⊆ 𝒦∗ is FĎČEĝ-Iēċ-learnable (resp. FĎČEĝ-Tĝę-learnable) if and only if
the identity idℱ is (𝜂INF, 𝜅∘limℋ)-computable (resp. (𝜂TXT, 𝜅∘limℋ)-computable).

Proof. We only prove the case of FĎČEĝ-Iēċ-learning, since we can prove the case
of FĎČEĝ-Tĝę-learning in exactly the same way.

The “only if” part: There is a learner M that FĎČEĝ-Iēċ-learns ℱ, hence for all
𝐾 ∈ ℱ and all 𝜎 ∈ dom(𝜂INF), Mఙ converges to a hypothesis 𝐻 ∈ ℋ such that
𝜅(𝐻) = 𝐾. Thus

idℱ ∘ 𝜂INF(𝜎) = 𝜅 ∘ limℋ(Mఙ), (2.11)

and this means that idℱ is (𝜂INF, 𝜅 ∘ limℋ)-computable.
The “if” part: For someM, the above equation (2.11) holds for all𝜎 ∈ dom(𝜂INF).

This means that M is a learner that FĎČEĝ-Iēċ-learns ℱ.

Here we consider two more learning criteria, FĎČFĎē-Iēċ-learning and FĎČFĎē-
Tĝę-learning, where the learner generates only one correct hypothesis and halts.
This learning corresponds to ϔinite learning, or one shot learning, introduced by finite learning

one shot learningGold (1967) and Trakhtenbrot and Barzdin (1970) and it is a special case of learn-
ing with a bound of mind change complexity, the number of changes of hypothesis,
introduced by Freivalds and Smith (1993) and used to measure the complexity of
learning classes (Jain et al., 1999b). We obtain the following theorem.

40 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

INF(ℱ) M //

𝜂୍୒୊
��

ℋఠ

𝜅 ∘ limℋ
��

ℱ idℱ
// ℱୈ

INF(𝒦∗) M //

𝜂୍୒୊
��

ℋఠ

𝛾 ≡ 𝜅H
��

𝒦∗
id

// 𝒦∗

Figure 2.5 | The commutative diagram representing FIGEX-INF-learning ofℱ (left), and FIGEFEX-INF-learning ofℱ
(both left and right). In this diagram, INF(ℱ) denotes the set of informants of𝐾 ∈ ℱ.

Theorem 2.43
A set ℱ ⊆ 𝒦∗ is FĎČFĎē-Iēċ-learnable (resp. FĎČFĎē-Tĝę-learnable) if and only
if the identity idℱ is (𝜂INF, 𝜅)-computable (resp. (𝜂TXT, 𝜅)-computable).

Proof. We only prove the case of FĎČFĎē-Iēċ-learning, since we can prove the case
of FĎČFĎē-Tĝę-learning in exactly the same way.

The “only if” part: There is a learner M that FĎČFĎē-Iēċ-learns ℱ, hence for all
𝐾 ∈ ℱ and all𝜎 ∈ dom(𝜂INF) of𝐾, we can assume thatMఙ = 𝐻 such that 𝜅(𝐻) = 𝐾.
Thus we have

idℱ ∘ 𝜂INF(𝜎) = 𝜅(Mఙ). (2.12)

This means that idℱ is (𝜂INF, 𝜅)-computable.
The “if” part: For someM, the above equation (2.12) holds for all𝜎 ∈ dom(𝜂INF).

This means that M is a learner that FĎČFĎē-Iēċ-learns ℱ.

Finally, we show a connection between effective learning of ϐigures and the
computability of ϐigures. Since FĎČEċEĝ-Tĝę = ∅ (Theorem 2.31), we only treat
learning from informants. We deϐine the representation 𝛾 ∶⊆ ℋఠ → 𝒦∗ by 𝛾(𝑝) ≔
𝐾 if 𝑝 = 𝐻଴, 𝐻ଵ, … such that 𝐻௜ ∈ ℋ and 𝑑H(𝐾, 𝜅(𝐻௜)) ≤ 2ି௜ for all 𝑖 ∈ ℕ.

Lemma 2.44
𝛾 ≡ 𝜅H.

Proof. First we prove 𝛾 ≤ 𝜅H. For the function 𝑔 ∶ ℕ → ℝ such that

𝑔(𝑖) = ⌈ 𝑖 + logଶ √𝑑 ⌉,

we have diam(𝑔(𝑖)) = √𝑑 ⋅ 2ି௚(௜) ≤ 2ି௜ for all 𝑖 ∈ ℕ. Thus there exists a com-
putable function 𝑓 such that, for all 𝑝 ∈ dom(𝛾), 𝑓(𝑝) is a representation of 𝜅H
since, for an inϐinite sequence of hypotheses 𝑝 = 𝐻଴, 𝐻ଵ, … , all 𝑓 has to do is to
generate an inϐinite sequence 𝑞 = 𝑤଴‖𝑤ଵ‖𝑤ଶ‖… such that 𝑤௜ = 𝜄(𝐻௚(௜)

௚(௜)) for all
𝑖 ∈ ℕ, which results in

𝑑H(𝐾, 𝜈𝒬(𝑤௜)) ≤ diam(𝑔(𝑖)) = √𝑑 ⋅ 2ି௚(௜) ≤ 2ି௜

for all 𝑖 ∈ ℕ.

2.7 SUMMARY 41

Next, we prove 𝜅H ≤ 𝛾. Fix 𝑞 ∈ dom(𝜅H) with 𝑞 = 𝑤଴‖𝑤ଵ‖… . For each 𝑖 ∈ ℕ,
let 𝑤௜ = 𝜄(𝑤௜,଴, 𝑤௜,ଵ, … , 𝑤௜,௡). Then the set {𝑤௜,଴, … , 𝑤௜,௡}, which we denote 𝐻௜ ,
becomes a hypothesis. From the deϐinition of 𝜅H,

𝑑H(𝐾, 𝜅(𝐻௜)) ≤ 2ି௜

holds for all 𝑖 ∈ ℕ. This means that, for the sequence 𝑝 = 𝑤଴, 𝑤ଵ, … , 𝛾(𝑝) = 𝐾. We
therefore have 𝛾 ≡ 𝜅H.

By using this lemma, we interpret effective learning of ϐigures as the computabil-
ity of two identities (Figure 2.5).

Theorem 2.45
A set ℱ ⊆ 𝒦∗ is FĎČEċEĝ-Iēċ-learnable if and only if there exists a computable
function 𝑓 such that 𝑓 is a (𝜂INF, 𝜅 ∘ limℋ)-realization of the identity idℱ , and 𝑓 is
also a (𝜂INF, 𝛾)-realization of the identity id ∶ 𝒦∗ → 𝒦∗.

Proof. We prove the latter half of the theorem, since the former part can be proved
exactly as for Theorem 2.42.

The “only if” part: We assume that a learner M FĎČEċEĝ-Iēċ-learns ℱ. For all
𝐾 ∈ 𝒦∗ and all 𝜎 ∈ dom(𝜂INF),

id ∘ 𝜂INF(𝜎) = 𝛾(Mఙ)

holds since the identity id is (𝜂INF, 𝛾)-computable.
The “if” part: For someM, id∘𝜂INF(𝜎) = 𝛾(Mఙ) for all 𝜎 ∈ dom(𝜂INF). It follows

that M is a learner that FĎČEċEĝ-Iēċ-learns ℱ.

Thus in FĎČEċEĝ-Iēċ- and FĎČEċEĝ-Tĝę-learning of a set of ϐiguresℱ, a learner
M outputs a hypothesis 𝑃 with 𝜅(𝑃) = 𝐾 in ϐinite time if 𝐾 ∈ ℱ, and M outputs
the “standard” representation of 𝐾 if 𝐾 ∈ 𝒦∗ ⧵ ℱ since we prove that 𝛾 ≡ 𝜅H in
Lemma 2.44. Informally, this means that there is not too much loss of information
of ϐigures even if they are not explanatory learnable.

2.7 Summary

We have proposed the learning of ϐigures using self-similar sets based on the Gold-
style learning model towards a new theoretical framework of binary classiϐication
focusing on computability, and demonstrated a learnability hierarchy under var-
ious learning criteria (Figure 2.3). The key to the computable approach is amal-
gamation of discretization of data and the learning process. We showed a novel
mathematical connection between fractal geometry and the Gold-style learning
model by measuring the lower bound of the size of training data with the Haus-
dorff dimension and the VC dimension. Furthermore, we analyzed our learning
model using TTE (Type-2 Theory of Effectivity) and presented several mathemat-
ical connections between computability and learnability.

Although we theoretically showed that fractals (self-similar sets) can be effec-
tively used as a representation system for learning of ϐigures, there may be more
efϐicient systems in terms of time and space complexities. To examine learning
under such systems, our framework can be used as a basis.

42 LEARNING FIGURES AS COMPUTABLE CLASSIFICATION

In these days, most methods in machine learning are based on a statistical ap-
proach (Bishop, 2007). The reason is that many data in the real world are in ana-
log (real-valued) form, and the statistical approach can treat such analog data di-
rectly in theory. However, all learning methods are performed on computers. This
means that all machine learning algorithms actually treat discretized digital data
and, now, most research pays no attention to the gap between analog and digital
data. In this chapter we have proposed a novel and completely computable learn-
ing method for analog data, and have analyzed the method precisely. This work
will be a theoretical foundation for computable learning from analog data, such as
classiϐication, regression, and clustering.

Part II

From Theory to Practice

“the whole Universe is made up of these two classes together”
— George Boole, An Investigation of the Laws of Thought

3

CODING DIVERGENCE

TčĊ ĆĎĒ Ĕċ ęčĎĘ ĈčĆĕęĊė is to give a practical learning method for continuous
data in a computational manner started from theoretical analysis. We inte-

grate two fundamental processes: discretization of continuous data and learning
of a model that explains them. In particular, we treat the problem of measuring the
difference between two sets of real-valued data, since such a problem is basic for
a lot of tasks in machine learning, e.g., classiϐication and clustering. We propose a
novel measure, called coding divergence, to measure similarity between such sets,coding divergence
and construct a classiϐier using it. The key concept of the divergence is the simple
procedure separation: The coding divergence measures the complexity of separat-
ing a positive dataset from a negative dataset, which corresponds to the height of
a decision tree separating them, intuitively.

Motivation

In experimental science, a lot of experiments are designed including a negative
control and a positive control. Positive controls conϐirm that the procedure is com-negative control

positive control petent for observing the effect, and negative controls conϐirm that the procedure
is not observing an unrelated effect. Testing the effect of a treatment group is the
objective of such an experiment. A typical situation is to test the effect of a new
drug, where the result of applying the new drug (treatment group) is compared
against placebo (negative control).

The standard method for the above task is a statistical hypothesis test, whichstatistical hypothesis test
has developed from the works by Neyman and Pearson (1928, 1933) and Fisher
(1925, 1956). However, it is well known that there exist many fundamental prob-
lems in statistical hypothesis testing such as non-veriϐiable assumptions for pop-
ulations and arbitrary 𝑝 values (Johnson, 1999) when we apply such methods to
actual datasets. As a result, even in the top journals such as Nature, Science, and
Cell, we can easily ϐind inappropriate usage of statistical hypothesis testing¹. Thus
an alternative method to analyze experimental results is required.

All the scientists have to do is to judge to which controls a treatment group
belongs and, obviously, this typical task in experimental science can be viewed as

¹Nature says “please help us” to deal with various statistical methods appropriately (http://www.
nature.com/nature/authors/gta/).

http://www.nature.com/nature/authors/gta/
http://www.nature.com/nature/authors/gta/

CODING DIVERGENCE 45

classiϔication in machine learning, that is, a pair of negative and positive controls is classification
given as a training dataset, and a classiϐier labels a treatment group (corresponds
to a test set) “negative” or “positive” using the training set. Note that labels of all
elements in the test set are same. Therefore, comparing the similarity between the
negative control and the test set to the one between the positive control and the
test set is a direct way, and the coding divergence, which will be introduced in this
chapter, can achieve such task.

Note that lots of existing classiϐication methods based on statistics could not
work well, since most of them have been proposed for large datasets, while typ-
ical datasets are small in experimental science such as physiology. Moreover, most
classiϐication methods considered in the machine learning community usually clas-
sify each test datum, whereas we have to classify a set of test data in controlled
experiments, and the coding divergence is designed for the task.

Contributions

The coding divergence, proposed in this chapter, uses no statistics and no proba-
bilistic models, and purely depends on the topological structure (in the sense of
mathematics) of the Cantor space Σఠ , which is known as the standard topologi-
cal space of the set of inϐinite sequences (Weihrauch, 2000). Thus, for example,
it has no assumptions for the probability distributions of datasets. This property
enables us to develop a robust machine learning algorithm for various datasets.

We identify each real-valued datum with a real vector in the 𝑑-dimensional
Euclidean space ℝௗ , and realize discretization of a real-valued datum through an
topological mapping from ℝௗ into the Cantor space Σఠ . A topology uses open sets open set
to axiomatize the notion of approximation, and it enables us to treat each dis-
cretized datum as a base element of an open set of the Cantor space.

The simplest model, which is consistent with the given two sets, is learned in
the Cantor space with assuming that one set is a set of positive examples and the
other set is a set of negative examples, i.e., the learned model explains all positive
examples and does not explain any negative examples. This model corresponds to
the minimum open set in the Cantor space Σఠ . The coding divergence is obtained minimum open set
from the length of the code that encodes the learned model in the Cantor space.

Figure 3.1 shows two examples of computing the binary-coding divergence (the binary-coding divergence
coding divergence with the binary encoding) where each datum is a vector in ℝଶ.
The unit cube ℐ = [0, 1] × [0, 1] is partitioned recursively, and each partitioned
cube is encoded by the binary encoding (see Section 3.2.2 and Figure 3.3). In the
left panel (Figure 3.1a), to separate one set from the other set, we need only one
partition in each dimension, and need 2/10 symbols par datum. In contrast in the
right panel (Figure 3.1b), three recursive partitions are needed in each dimension,
and we need 26/10 symbols par datum. The binary-coding divergence is deter-
mined directly from these numbers of symbols, that is, 2/10+2/10 = 0.4 in Figure
3.1a and 26/10 + 26/10 = 5.2 in Figure 3.1b.

This chapter is organized as follows: we give mathematical background in Sec-
tion 3.2. Section 3.3 is the main part in this chapter, where we introduce the coding
divergence and a classiϐier using the divergence. We analyze performance of the
classiϐier experimentally in Section 3.4. Section 3.5 summarizes this chapter.

46 CODING DIVERGENCE

0

0.5

1

0 10.5
(0,0) (1,0)

(0,1) (1,1)

(a)

0

0.5

1

0 10.5
(b)

Figure 3.1 | Two examples of computing the binary-coding divergence. Each ○ and× denotes a real-valued
datum, and each cube is encoded by the binary encoding (same as the base-2 embedding in Definition 3.3). In
the left panel (a), we need a pair of codes (0,0) (encoding [0, 1/2]× [0, 1/2]) to separate ○ from×, and (1,1)
(encoding [1/2, 1]× [1/2, 1]) to separate× from○, hence we can separate themwith 2/10 symbols par datum,
and the binary-coding divergence is 2/10 + 2/10 = 0.4 (For each pair of codes, we ignore symbols ''('', '','', and '')'',
and actually tupled into one code. See the equation (2.4)). In contrast in the right panel (b), weneed codes (00,00),
(00,01), (010,010), (011,011), and (110,100) to separate○ from×, and (10,10), (11,11), (111,101), (010,011),
and (011,010) to separate× from○. Thus they are separated by (4 + 4+ 6+ 6+ 6)/10 symbols par datum, and
the divergence is 26/10 + 26/10 = 5.2.

3.1 RelatedWork

Liu et al. (2008) used the similar idea of our divergence to anomaly detection. They
constructed decision trees by partitioning intervals randomly and recursively, and
used the height of them to measure the complexity of separating each datum. Com-
pared to the method, our contribution is as follows: We treat the way of partition
as the process of discretization and formulate it as a mapping (encoding) of ℝௗ

into the Cantor space Σఠ , and show that the height of a decision tree corresponds
to the size of an open set in the topological space Σఠ . This gives the theoretical jus-
tiϐication for the process “partition”. Furthermore, this is the ϐirst time to perform
classiϐication using such idea.

Discretization is also used to construct decision trees from continuous data.
For example, C4.5 (Quinlan, 1996) is one of famous algorithms to develop deci-
sion trees together with discretization. Our approach is different from them since
we realize discretization process by methods of encoding real numbers, give the-
oretical support by modern mathematical theories in Computable Analysis, and
integrate the process into computational learning.

Kernel methods including Support Vector Machines (SVMs) are known to be
one of the most famous and powerful classiϐication methods (Bishop, 2007), where
any form of data, for example sequences, images, and graphs, are mapped into a
high dimensional feature space, which is the 𝑑-dimensional Euclidean space ℝௗ ,
or more generally the inϐinite-dimensional Hilbert space, to measure the similarity
between each pair of data. In contrast, our strategy is inverted: Every real-valued
datum in ℝௗ is mapped into the Cantor space Σఠ . The “discrete” space Σఠ might
seem to be strange as a feature space, but is natural for machine learning from
real-valued data with discretization.

3.2 MATHEMATICAL BACKGROUND 47

Some studies use the Kolmogorov complexity for machine learning such as
clustering (Cilibrasi and Vitányi, 2005; Li et al., 2003) by measuring the similar-
ity between a pair of data. Compared to the methods, our approach has mainly
two advantages as follows: First, the coding divergence is computable (Section
3.3.3) whereas the Kolmogorov complexity is not, hence they use actual compres-
sion algorithms such as gzip to obtain an approximate value of the Kolmogorov
complexity, which result in a gap between theory and practice; second, our ap-
proach is more general than theirs, because we can treat any continuous objects
through encoding of them, however they cannot since they do not consider encod-
ing process of objects.

3.2 Mathematical Background

We introduce our mathematical background using the framework of Type-2 The-
ory of Effectivity (TTE) studied in the area of computable analysis (Weihrauch,
2000). Remember that ↑𝑤 denotes the set { 𝑝 ∈ Σఠ ∣ 𝑤 ⊑ 𝑝 } and, in addition, we
denote by ↑𝑊 the set { 𝑝 ∈ Σఠ ∣ 𝑤 ⊑ 𝑝 for some 𝑤 ∈ 𝑊 } for a set of ϐinite sequences
𝑊 ⊆ Σ∗. The size of 𝑊 is deϐined by |𝑊| ≔ ∑௪∈ௐ |𝑤|. For example, if 𝑊 =
{𝟷𝟷, 𝟶, 𝟷𝟶𝟶}, then |𝑊| = 2 + 1 + 3 = 6.

3.2.1 The Cantor Space

First, we introduce the Cantor topology into the set of inϐinite sequences Σఠ , which Cantor topology
is known as the standard topology on it (Weihrauch, 2000).

Deϐinition 3.1: The Cantor topology
Deϐine 𝜏ஊഘ ≔ {↑𝑊 ∣ 𝑊 ⊆ Σ∗ }. We say that 𝜏ஊഘ is the Cantor topology over Σ,
and the topological space (Σఠ , 𝜏ஊഘ) is the Cantor space Cantor space.

We abbreviate (Σఠ , 𝜏ஊഘ) as Σఠ if 𝜏ஊഘ is understood from the context. Then, the set
{ ↑𝑤 ∣ 𝑤 ∈ Σ∗ } becomes a base of the topology 𝜏ஊഘ .
Example 3.2
Let an alphabet Σ = {𝟶, 𝟷}. For example, the set ↑𝟶𝟶 = { 𝑝 ∈ Σఠ ∣ 𝟶𝟶 ⊑ 𝑝 } is a
base element of the Cantor space Σఠ , and ↑𝟷𝟶 is also a base element. Of course,
both sets ↑𝟶𝟶 and ↑𝟷𝟶 are open sets in the space Σఠ , i.e., ↑𝟶𝟶 ∈ 𝜏ஊഘ and ↑𝟷𝟶 ∈ 𝜏ஊഘ .
Assume 𝑊 = {𝟶𝟶, 𝟷𝟶}. Then the set ↑𝑊 = {𝑝 ∈ Σఠ ∣ 𝟶𝟶 ⊑ 𝑝 or 𝟷𝟶 ⊑ 𝑝 } is an
open set. Note that ↑𝑊 = 𝟶𝟶Σఠ ∪ 𝟷𝟶Σఠ .
The Cantor space Σఠ can be visualized by a tree, where each inϐinite sequence 𝑝 ∈
Σఠ corresponds to an inϐinite descending path from the root (Figure 3.2). Then a
base element ↑𝑤 is a full subtree and an open set is a union of full subtrees, and
the length |𝑤| corresponds to the depth of the root of the subtree.

3.2.2 Embedding the Euclidean Space into the Cantor Space

Let us approach to the𝑑-dimensional Euclidean spaceℝௗ through the Cantor space
Σఠ using topological mappings between ℝௗ and Σఠ .

We say that a surjective function 𝜌 ∶⊆ Σఠ → ℝௗ is a representation of ℝௗ , and representation
an injective function 𝜑 ∶⊆ ℝௗ → Σఠ is an embedding of ℝௗ , meaning that repre- embedding

48 CODING DIVERGENCE

Figure 3.2 | Tree representation of
the Cantor space over ∑= {0, 1}. Sub-
trees ↑010 and ↑1010 are base ele-
ments, and the set ↑010 ∪ ↑1010 is
open.

↑010 ↑1010

sentations and embeddings are dual concepts. In the previous chapter, the binary
representation was used as the canonical representation of real numbers. In the
ϐield of computable analysis, computability ofℝௗ or other continuous objects (i.e.,
uncountable sets) are treated through representations with Σఠ (Schröder, 2002a;
Weihrauch, 2000), and here we apply this theoretical framework to machine learn-
ing. For simplicity, we turn an embedding 𝜑 into a bijective function by replac-
ing the codomain Σఠ by its actual image 𝜑(ℝௗ), and assume that a representation
𝜌 = 𝜑ିଵ.

When we identify an element inℝௗ with an object with analog quantity, an em-
bedding 𝜑 can be viewed as a mathematical realization of an encoding method or
an actual A/D converter, where a continuous signal (analog quantity) is converted
to a sequence of bits (digital quantity). The true value 𝑥 of the analog quantity is
encoded as an inϐinite sequence𝜑(𝑥)by the embedding𝜑, and any preϐix𝑤 of𝜑(𝑥)
is a discretized digital value. The preϐix𝑤 tells us 𝑥 is in the interval 𝜑ିଵ(↑𝑤), and
the width of the interval

ห 𝜑ିଵ(↑𝑤) ห = sup ൛ 𝑑(𝑥, 𝑦) ห 𝑥, 𝑦 ∈ 𝜑ିଵ(↑𝑤) ൟ
(𝑑 is the Euclidean metric) corresponds to an error of𝑤. This modeling reϐlects the
fundamental property of observation together with discretization, that is, every
(discretized) real-valued datum must have some error intrinsically (Baird, 1994).

We now deϐine the standard embedding, the base-𝛽 embedding.
Deϐinition 3.3: Base-𝜷 embedding
Assume𝑑 = 1. The base-𝛽 embedding

base-𝛽 embedding
of the unit interval ℐ = [0, 1] is a mapping

𝜑ఉ ∶ ℐ → Σఠ that maps 𝑥 to an inϐinite sequence 𝑝 composed as follows: For all
𝑖 ∈ ℕ, 𝑥 = 0 implies 𝑝௜ = 0, and 𝑥 ≠ 0 implies

𝑝௜ =
⎧⎪
⎨⎪
⎩

0 if 𝑧 < 𝑥 ≤ 𝑧 + 𝛽ି(௜ାଵ),
1 if 𝑧 + 𝛽ି(௜ାଵ) < 𝑥 ≤ 𝑧 + 𝛽ି(௜ାଵ)ାଵ,
...
𝛽 − 1 if 𝑧 + 𝛽ି(௜ାଵ)ା(ఉିଶ) < 𝑥 ≤ 𝑧 + 𝛽ି(௜ାଵ)ା(ఉିଵ),

where

𝑧 =
௜ିଵ

෍
௝ୀ଴

𝑝௝𝛽
ି(௝ାଵ)

if 𝑖 ≠ 0, and 𝑧 = 0 otherwise.

3.3 CODING DIVERGENCE 49

0 1φ2(0.3) = 01001...
φ2((0.625, 0.75]) = ↑101

Po
si

tio
n

0
1
2
3
4

Figure 3.3 | The (one-dimensional)
binary embedding φ2. The position i
is 1 if it is on the line, and 0 otherwise.

Especially, we call the base-2 embedding the binary embedding binary embedding. Figure 3.3 denotes
the binary embedding 𝜑ଶ, where each horizontal line means that the correspond-
ing position is 1 on the line and 0 otherwise. For example, let 𝑝 = 𝜑ଶ(0.3). Then
𝑝଴ = 0 since the position 0 is not on the line, and 𝑝ଵ = 1 since the position 1 is on
the line, and so on.

By using the tupling function (see Equation (2.4)), we deϐine the 𝑑-dimensional
base-𝛽 embedding 𝑑-dimensional base-𝛽 embedding𝜑ௗ

ఉ from ℐ ⊂ ℝௗ to Σఠ by

𝜑ௗ
ఉ(𝑥ଵ, 𝑥ଶ, … , 𝑥ௗ) ≔ ⟨𝜑ఉ(𝑥ଵ), 𝜑ఉ(𝑥ଶ), … , 𝜑ఉ(𝑥ௗ)⟩. (3.1)

Example 3.4
For the binary embedding 𝜑ଶ, we have 𝜑ଶ(0.3) = 𝟶𝟷𝟶… and 𝜑ଶ(0.5) = 𝟶𝟷𝟷… .
Thus 𝜑ଶ

ଶ(0.3, 0.5) = ⟨𝟶𝟷𝟶… , 𝟶𝟷𝟷… ⟩ = 𝟶𝟶𝟷𝟷𝟶𝟷… .
We abbreviate 𝑑 of 𝜑ௗ

ఉ if it is understood from the context.

3.3 Coding Divergence

We give a novel measure of the difference between sets in the 𝑑-dimensional Eu-
clidean space ℝௗ , called the coding divergence¹, with assuming that an element coding divergence
in ℝௗ corresponds to a numerical (real-valued) data point. This divergence is
the main contribution in this chapter. We design a classiϐier using it in Subsec-
tion 3.3.2, and construct a learner that learns the divergence in Subsection 3.3.3.

3.3.1 Deϐinition and Properties

Let𝑋 and𝑌 be a pair of nonempty ϐinite sets in the unit interval ℐ ⊂ ℝௗ . We encode
them by an embedding 𝜑 from ℐ to the Cantor space Σఠ .

We set a model of given data as an open set in the Cantor space, since this prop- model
open seterty “open” is desirable for machine learning as follows: For a set 𝑃, if 𝑃 is open,

then there exists a set of ϐinite sequences 𝑊 such that ↑𝑊 = 𝑃 (remember that
𝑊Σఠ = {𝑝 ∈ Σఠ ∣ 𝑤 ⊑ 𝑝 for some𝑤 ∈ 𝑊 }). This means that 𝑃 is ϔinitely observ-
able (Smyth, 1992), that is, for any inϐinite sequence 𝑝, we can decide whether or
not 𝑝 ∈ 𝑃 by observing just some preϐix of 𝑝. Thus from sets of inϐinite sequences
𝜑(𝑋) and 𝜑(𝑌), we can obtain an open set as a model of them in ϔinite time

We say that a set of inϐinite sequences 𝑃 ⊆ Σఠ is consistent with an ordered consistent
pair (𝜑(𝑋), 𝜑(𝑌)) if 𝑃 ⊇ 𝜑(𝑋) and 𝑃∩𝜑(𝑌) = ∅, hence if we see𝜑(𝑋) and𝜑(𝑌) as

¹The usage of the word “divergence” follows the original deϐinition of the Kullback-Leibler diver-
gence (Kullback and Leibler, 1951).

50 CODING DIVERGENCE

positive and negative examples, respectively, then the set𝑃 “explains” all elements
in 𝜑(𝑋) and does not explain any elements in 𝜑(𝑌).

Deϐinition 3.5: Coding divergence
Given an embedding 𝜑 ∶ ℐ → Σఠ . For a pair of nonempty ϐinite sets 𝑋, 𝑌 ⊂ ℐ,
deϐine the coding divergence with respect to

coding divergence
𝜑 by

𝐶ఝ(𝑋, 𝑌) ≔ ൝∞ if 𝑋 ∩ 𝑌 ≠ ∅,
𝐷ఝ(𝑋; 𝑌) + 𝐷ఝ(𝑌; 𝑋) otherwise,

where 𝐷ఝ is the directed coding divergence with respect to
directed coding divergence

𝜑 deϐined by

𝐷ఝ(𝑋; 𝑌) ≔
1
#𝑋 min { |𝑂| ห 𝑂 is open, and consistent with (𝜑(𝑋), 𝜑(𝑌)) } .

The standard embedding for the coding divergence is the base-𝛽 embedding 𝜑ఉ
and, especially, the coding divergence with respect to 𝜑ఉ is written by 𝐶ఉ(𝑋, 𝑌). If
𝛽 = 2, we call 𝐶ଶ(𝑋, 𝑌) the binary-coding divergence.binary-coding divergence

Intuitively, the procedure to obtain the directed coding divergence is as follows:
We encode given sets 𝑋, 𝑌 into the Cantor space Σఠ by an embedding 𝜑, ϐind the
simplest model (minimum open set) 𝑂 that is consistent with an ordered pair of
sets of inϐinite sequences (𝜑(𝑋), 𝜑(𝑌)), and measure the size |𝑂|. Thus the directed
coding divergence 𝐷ఝ(𝑋; 𝑌) can be viewed as the result of consistent learning (cf.consistent learning
Subsection 2.3.2) from positive examples 𝜑(𝑋) and negative examples 𝜑(𝑌) in the
computational learning theory context (Jain et al., 1999b).
Example 3.6
Suppose that 𝑋 = {√0.2, 0.8} and 𝑌 = {𝜋 / 10}. Then in the binary embedding 𝜑ଶ
(Deϐinition 3.3), these sets are encoded into inϐinite sequences as follows: 𝜑ଶ(𝑋) =
{𝟶𝟷𝟷… , 𝟷𝟷𝟷… } and𝜑ଶ(𝑌) = {𝟶𝟷𝟶… }. Thus for an open set ↑𝑉with𝑉 = {𝟶𝟷𝟷, 𝟷},
↑𝑉 is minimum and consistent with (𝜑ଶ(𝑋), 𝜑ଶ(𝑌)). Therefore we have𝐷ଶ(𝑋; 𝑌) =
(3 + 1)/2 = 2. Similarly, ↑𝑊 with 𝑊 = {𝟶𝟷𝟶} is minimum and consistent with
(𝜑ଶ(𝑌), 𝜑ଶ(𝑋)), hence 𝐷ଶ(𝑌; 𝑋) = 3/1 = 3. Consequently, 𝐶ଶ(𝑋, 𝑌) = 𝐷ଶ(𝑋; 𝑌) +
𝐷ଶ(𝑌; 𝑋) = 5.

It is trivial that the coding divergence is not a metric since 𝐶ఝ(𝑋, 𝑌) ≠ 0 for all
nonempty ϐinite sets 𝑋, 𝑌 ⊂ ℐ.

Lemma 3.7
The coding divergence satisϔies the following conditions:

1. 𝐶ఝ(𝑋, 𝑌) > 0.
2. 𝐶ఝ(𝑋, 𝑌) = 𝐶ఝ(𝑌, 𝑋).

Furthermore, it does not satisfy the triangle inequality.

Proof. The conditions 𝐶ఝ(𝑋, 𝑌) > 0 and 𝐶ఝ(𝑋, 𝑌) = 𝐶ఝ(𝑌, 𝑋) are proved directly
from the deϐinition. We can easily ϐind an example, where the triangle inequality
does not hold. For example, let 𝑋 = {0.1}, 𝑌 = {0.8}, and 𝑍 = {0.2}, and as-
sume that we use the binary embedding. We have 𝐶ଶ(𝑋, 𝑌) = 2, 𝐶ଶ(𝑌, 𝑍) = 2, and
𝐶ଶ(𝑍, 𝑋) = 6, thus 𝐶ଶ(𝑋, 𝑌) + 𝐶ଶ(𝑌, 𝑍) < 𝐶ଶ(𝑍, 𝑋).

3.3 CODING DIVERGENCE 51

3.3.2 Classiϐication Using Coding Divergence

We construct a lazy learner that classiϐies a given dataset using the coding diver- lazy learner
gence. It classiϐies a test set by measuring its similarity (coding divergence) to a
training dataset. It is quite simple and has no parameters, hence we can apply it
to any type of real-valued datasets without any consideration. We will show its
robustness in Section 3.4.

Assume that there are two classes 𝐴 and 𝐵, and a pair (𝑋, 𝑌) is given as a train-
ing dataset (𝑋 and 𝑌 are nonempty ϐinite sets in ℝௗ), where 𝑋 (resp. 𝑌) belongs
to 𝐴 (resp. 𝐵). Moreover, suppose that we have a dataset 𝑍 ⊂ ℝௗ in which every
datum is unlabeled, and we just know that all labels of elements in 𝑍 are same.

The classiϐier performs as follows: First, it computes 𝐶ఝ(𝑋, 𝑍) and 𝐶ఝ(𝑌, 𝑍),
and next, judges

𝑍 belongs to the class ൝ 𝐴 if 𝐶ఝ(𝑋, 𝑍) > 𝐶ఝ(𝑌, 𝑍),
𝐵 otherwise.

Generally, the computability of 𝐶ఝ(𝑋, 𝑍) and 𝐶ఝ(𝑌, 𝑍) is not guaranteed. However,
if we use the base-𝛽 embedding𝜑ఉ such as the binary embedding (Deϐinition 3.3),
then it is effectively computable. We give the learner 𝜓 that learns the coding di-
vergence with respect to 𝜑ఉ in the next subsection.

3.3.3 Learning of Coding Divergence

Here we integrate discretization of encoded real-valued data (inϐinite sequences)
and learning of the coding divergence with respect to 𝜑ఉ , and construct a learner
that learns the divergence 𝐶ఉ(𝑋, 𝑌) from 𝜑ఉ(𝑋) and 𝜑ఉ(𝑌).

Procedure 3.1 shows the learner 𝜓 that learns the coding divergence 𝐶ఉ(𝑋, 𝑌)
from a pair of given sets of encoded inϐinite sequences𝜑ఉ(𝑋) and𝜑ఉ(𝑌). It contin-
ues to discretize each sequence, obtains longer and longer preϐixes, and generates
approximate values of the 𝐶ఉ(𝑋, 𝑌). For inputs 𝜑ఉ(𝑋) and 𝜑ఉ(𝑌), the output of
𝜓 (ϐinite or inϐinite sequence) is denoted by 𝜓(𝜑ఉ(𝑋), 𝜑ఉ(𝑌)), hence for example
𝜓(𝜑ఉ(𝑋), 𝜑ఉ(𝑌))(0) is the ϐirst output, 𝜓(𝜑ఉ(𝑋), 𝜑ఉ(𝑌))(1) is the second output,
and so on.

To learn the coding divergence, a learner has to judge whether or not an open
set𝑂 is consistent with given sets (𝜑ఉ(𝑋), 𝜑ఉ(𝑌)), and we show that it is decidable
in ϐinite time.

Lemma 3.8
For every open set 𝑂 and every 𝑃, 𝑄 ⊆ Σఠ , it is decidable that whether or not 𝑂 is
consistent with (𝑃, 𝑄) in ϔinite time.

Proof. Let 𝑂 = 𝑊Σఠ and 𝑘 = max௪∈ௐ |𝑤|, and deϐine 𝑃[𝑘] ≔ { 𝑝[𝑘] ∣ 𝑝 ∈ 𝑃 } and
𝑄[𝑘] ≔ { 𝑞[𝑘] ∣ 𝑞 ∈ 𝑄 }. We show that we can check the consistency only using𝑊,
𝑃[𝑘], and 𝑄[𝑘] (thus it is decidable). The condition 𝑂 ⊇ 𝑃 holds if and only if for
all 𝑥 ∈ 𝑃[𝑘], there exists 𝑤 ∈ 𝑊 such that 𝑤 ⊑ 𝑥. Moreover, 𝑂 ∩ 𝑄 = ∅ if and only
if 𝑦 ⋢ 𝑤 and 𝑤 ⋢ 𝑦 for all 𝑤 ∈ 𝑂 and 𝑦 ∈ 𝑄[𝑘].

If𝑋∩𝑌 = ∅, then𝜓 halts in ϐinite time, and the last output is exactly the same as
𝐶ఉ(𝑋, 𝑌). Otherwise if 𝑋 ∩ 𝑌 ≠ ∅, then 𝜓 continues to output approximate values

52 CODING DIVERGENCE

Procedure 3.1: Learner 𝜓 that learns 𝐶ఉ(𝑋, 𝑌)

Input: Pair (𝜑ఉ(𝑋), 𝜑ఉ(𝑌)) (both 𝑋 and 𝑌 are nonempty ϐinite sets in ℐ)
Output: Finite or inϐinite sequence converging to 𝐶ఉ(𝑋, 𝑌)

function MĆĎē(𝜑ఉ(𝑋), 𝜑ఉ(𝑌))
1: LĊĆėēĎēČ(𝜑ఉ(𝑋), 𝜑ఉ(𝑌), ∅, ∅, #𝑋, #𝑌, 0)

function LĊĆėēĎēČ(𝑃, 𝑄, 𝐻ଵ, 𝐻ଶ, 𝑚, 𝑛, 𝑘)
1: 𝑉 ← DĎĘĈėĊęĎğĊ(𝑃, 𝑘)
2: 𝑊 ← DĎĘĈėĊęĎğĊ(𝑄, 𝑘)
3: 𝐻ଵ ← 𝐻ଵ ∪ {𝑣 ∈ 𝑉 ∣ 𝑣 ∉ 𝑊}
4: 𝐻ଶ ← 𝐻ଶ ∪ {𝑤 ∈ 𝑊 ∣ 𝑤 ∉ 𝑉}
5: 𝑃 ← {𝑝 ∈ 𝑃 ∣ 𝑝 ∉ 𝐻ଵΣఠ}
6: 𝑄 ← {𝑞 ∈ 𝑄 ∣ 𝑞 ∉ 𝐻ଶΣఠ}
7: output 𝑚ିଵ ∑௩∈ுభ |𝑣| + 𝑛ିଵ ∑௪∈ுమ |𝑤|
8: if 𝑃 = ∅ and 𝑄 = ∅ then halt
9: else return LĊĆėēĎēČ(𝑃, 𝑄, 𝐻ଵ, 𝐻ଶ, 𝑚, 𝑛, 𝑘 + 1)

function DĎĘĈėĊęĎğĊ(𝑃, 𝑘)
1: return {𝑝[𝑛] ∣ 𝑝 ∈ 𝑃}, where 𝑛 = (𝑘 + 1)𝑑 − 1

of the 𝐶ఉ(𝑋, 𝑌) = ∞ forever. We can easily prove that for all 𝑖, 𝑗 ∈ ℕ with 𝑖 < 𝑗,
𝜓(𝜑ఉ(𝑋), 𝜑ఉ(𝑌))(𝑖) ≤ 𝜓(𝜑ఉ(𝑋), 𝜑ఉ(𝑌))(𝑗), and
lim
௜→ஶ

𝜓(𝜑ఉ(𝑋), 𝜑ఉ(𝑌))(𝑖) = ∞.

This means that we can obtain more and more accurate values of the coding diver-
gence, even though we cannot obtain the exact value in ϐinite time. This property
corresponds to the effective computability realized by the Type-2 machine, whereeffective

Type-2 machine while a computer reads more and more precise information (longer and longer
preϐixes) of the input, it produces more and more accurate approximations of the
result. This machine is a natural extension of the usual Turing machine, and used to
introduce computability of continuous objects (Weihrauch, 2000). Furthermore,
this property is an effective version of the consistency in statistical context.
Example 3.9
Let us consider the case in Figure 3.1, and assume that𝑋 and 𝑌 consist of all ○ and
×, respectively. Let 𝑃 = 𝜑ଶ(𝑋) and 𝑄 = 𝜑ଶ(𝑌). Every pair of codes is tupled
into one code by the tupling function. In Figure 3.1a, DĎĘĈėĊęĎğĊ(𝑃, 0) returns
{𝟶𝟶} (corresponds to (𝟶, 𝟶)) and DĎĘĈėĊęĎğĊ(𝑄, 0) returns {𝟷𝟷} (corresponds to
(𝟷, 𝟷)). Thus 𝜓 outputs 2/10 + 2/10 = 0.4 and halts. In Figure 3.1b, both DĎĘ-
ĈėĊęĎğĊ(𝑃, 0) and DĎĘĈėĊęĎğĊ(𝑄, 0) return {𝟶𝟶, 𝟷𝟷}, and DĎĘĈėĊęĎğĊ(𝑃, 1) returns
{𝟶𝟶𝟶𝟶, 𝟶𝟶𝟶𝟷, 𝟶𝟶𝟷𝟷, 𝟷𝟷𝟷𝟶}, and DĎĘĈėĊęĎğĊ(𝑄, 1) returns {𝟷𝟷𝟶𝟶, 𝟷𝟷𝟷𝟷, 𝟶𝟶𝟷𝟷,
𝟷𝟷𝟷𝟶}. Thus 𝐻ଵ = {𝟶𝟶𝟶𝟶, 𝟶𝟶𝟶𝟷} and 𝐻ଶ = {𝟷𝟷𝟶𝟶, 𝟷𝟷𝟷𝟷}. Furthermore, for the
rest of data, DĎĘĈėĊęĎğĊ performs similarly, and ϐinite sequences 001100, 001111,
111000 and 111011, 001110, 001101 are added to𝐻ଵ and𝐻ଶ, respectively. Thus𝜓
outputs 26/10 + 26/10 = 5.2 and halts.

3.4 EXPERIMENTS 53

3.4 Experiments

We evaluate the performance of the classiϐier given in Subsection 3.3.2 by exper-
iments to analyze the coding divergence empirically. We compared accuracy of
classiϐication performed by the classiϐier obtained from sensitivity and speciϐicity
to those of other classiϐication methods.

Theoretically, our classiϐier can be applied to actual analog data such as (raw)
real-valued data and continuous signals. However, it is difϐicult to collect such type
of datasets and apply our classiϐier to them directly. Thereby in the following we
use just discretized real-valued data stored in databases.

3.4.1 Methods

First, we construct the learning algorithm M for empirical experiments that com-
putes an approximate value of the coding divergence with respect to the base-𝛽
embedding and always halts in ϐinite time (Algorithm 1). The algorithm M does
not receive inϐinite sequences, but receives just ϐinite sequences.

Deϐine for each 𝑖 ∈ ℕ,

𝜑ఉ(𝑋)[𝑖] ≔ ቄ 𝑤 ቚ |𝑤| = 𝑖 and 𝑝 ∈ ↑𝑤 for some 𝑝 ∈ 𝜑ఉ(𝑋) ቅ .

The algorithm M is slightly different from the learner 𝜓, since it receives only ϐi-
nite sequences 𝜑ఉ(𝑋)[𝑖] and 𝜑ఉ(𝑌)[𝑗]. We can get the exact coding divergence
(i.e., M(𝜑ఉ(𝑋)[𝑖], 𝜑ఉ(𝑌)[𝑗]) = 𝐶ఉ(𝑋, 𝑌)) in the usual situation where 𝜑ఉ(𝑋)[𝑖] ∩
𝜑ఉ(𝑌)[𝑗] = ∅holds. Moreover, the output ofM (denoted byM(𝜑ఉ(𝑋)[𝑖], 𝜑ఉ(𝑌)[𝑗]))
has the monotonicity with respect to 𝑖 and 𝑗: For all pairs of 𝑖, 𝑗 and 𝑖′, 𝑗′with 𝑖 ≤ 𝑖′ monotonicity
and 𝑗 ≤ 𝑗′, we have

ቚ 𝐶ఉ(𝑋, 𝑌) −M(𝜑ఉ(𝑋)[𝑖], 𝜑ఉ(𝑌)[𝑗]) ቚ

≥ ቚ 𝐶ఉ(𝑋, 𝑌) −M(𝜑ఉ(𝑋)[𝑖′], 𝜑ఉ(𝑌)[𝑗′]) ቚ ,

and

lim
௜,௝→ஶ

ቚ 𝐶ఉ(𝑋, 𝑌) −M(𝜑ఉ(𝑋)[𝑖], 𝜑ఉ(𝑌)[𝑗]) ቚ = 0.

Thus, intuitively, if we obtain more and more accurate data (longer and longer se-
quences), then approximation of the coding divergence becomes better and better,
meaning that M is an effective algorithm.

The computational complexity of M is 𝑂(𝑚𝑛𝑑), where 𝑚 and 𝑛 are the cardi-
nality of 𝑋 and 𝑌, respectively, since in each level 𝑘, updating 𝑉 and𝑊 (lines 7 and
8 in Algorithm 1) takes 𝑂(𝑚𝑛𝑑).

To treat data that are not in the unit interval ℐ, we use min-max normalization
that maps a value 𝑥 to 𝑥′, where

𝑥′ = 𝑥 −min{𝑋 ∪ 𝑌 ∪ 𝑍}
max{𝑋 ∪ 𝑌 ∪ 𝑍} − min{𝑋 ∪ 𝑌 ∪ 𝑍} .

The classiϐier with the above algorithmMwas implemented in R version 2.12.1
(R Development Core Team, 2011). We tested the performance of it by evaluating
accuracy, the standard error measure of classiϐication (Han and Kamber, 2006).

54 CODING DIVERGENCE

Algorithm 3.2: Learning algorithm M that learns 𝐶ఉ(𝑋, 𝑌)

Input: Pair (𝜑ఉ(𝑋)[𝑖], 𝜑ఉ(𝑌)[𝑗]) (𝑋, 𝑌 ⊂ ℐ and 𝑖, 𝑗 ∈ ℕ)
Output: Approximate value of 𝐶ఉ(𝑋, 𝑌)

function MĆĎē(𝑉,𝑊)
1: (𝐷ଵ, 𝐷ଶ) ← LĊĆėēĎēČ(𝑉,𝑊, 0, 0, 0,min{𝑖, 𝑗})
2: return 𝐷ଵ /#𝑉 + 𝐷ଶ /#𝑊

function LĊĆėēĎēČ(𝑉,𝑊,𝐷ଵ, 𝐷ଶ, 𝑘, 𝑘୫ୟ୶)
1: 𝑉dis ← DĎĘĈėĊęĎğĊ(𝑉, 𝑘)
2: 𝑊dis ← DĎĘĈėĊęĎğĊ(𝑊, 𝑘)
3: 𝑉sep ← {𝑣 ∈ 𝑉dis ∣ 𝑣 ∉ 𝑊dis}
4: 𝑊sep ← {𝑤 ∈ 𝑊dis ∣ 𝑤 ∉ 𝑉dis}
5: 𝐷ଵ ← 𝐷ଵ + ∑௩∈௏sep

|𝑣|
6: 𝐷ଶ ← 𝐷ଶ + ∑௪∈ௐsep

|𝑤|
7: 𝑉 ← {𝑣 ∈ 𝑉 ∣ 𝑣 ∉ 𝑉sepΣఠ}
8: 𝑊 ← {𝑤 ∈ 𝑊 ∣ 𝑤 ∉ 𝑊sepΣఠ}
9: if 𝑉 = ∅ and 𝑊 = ∅ then return (𝐷ଵ, 𝐷ଶ)

10: else if 𝑘 = 𝑘୫ୟ୶ then return (𝐷ଵ + 𝑛#𝑉,𝐷ଶ + 𝑛#𝑊)
11: else return LĊĆėēĎēČ(𝑃, 𝑄, 𝐷ଵ, 𝐷ଶ, 𝑘 + 1, 𝑘୫ୟ୶)

function DĎĘĈėĊęĎğĊ(𝑉, 𝑘) // 𝑉 ⊂ Σ∗
1: return {𝑣[𝑛] ∣ 𝑣 ∈ 𝑉} (𝑛 = (𝑘 + 1)𝑑 − 1)

Ten datasets were collected from UCI Machine Learning Repository (Frank and
Asuncion, 2010): abalon, transfusion, sonar, glass, segmentation, ionosphere,made-
lon, magic, waveform, and yeast. Every datum in each dataset is real-valued type
and belongs to one of two classes (if there are more than two classes, we picked up
just two classes). We used the size of each dataset 10 and 30, since one of applica-
tions is controlled experiments in life science, where such small sizes are typical.

We repeated the following procedure 10,000 times:
1. Sample 𝑑 attributes (𝑑 is 1, 2, or 3),
2. collect 𝑛 data for a training set 𝑋 and for a test set 𝑇ା from one class by inde-

pendent random sampling without replacement, and 𝑌 and 𝑇ି from the other
class, where 𝑛 = 10 or 30,

3. Using 𝑋 and 𝑌, classify test sets 𝑇ା and 𝑇ି by our method and other classiϐi-
cation methods.

The binary-coding divergence was used throughout all experiments.
Let 𝑡pos be the number of true positives, that is, the number of the case in which

𝑇ା is classiϐied correctly, and 𝑡neg be the number of true negatives. We calculated
the accuracy by (𝑡pos + 𝑡neg)/20000, since the sensitivity is 𝑡pos/10000 and the
speciϐicity is 𝑡neg/10000. For reference, we used SVM with the RBF kernel, SVM
with the polynomial kernel, and 𝑘-nearest neighbor classiϐiers (𝑘 = 1 and 5). We
used the function ksvm in the “kernlab” package for SVM (Karatzoglou et al., 2004),
and the function knn in the “class” package for the 𝑘-nearest neighbor classiϐiers,

3.5 SUMMARY 55

which have been implemented in R. Note that these methods classify each element
in a test set, thereby we classiϐied 𝑇ା (or 𝑇ି) to the class in which greater number
of elements in 𝑇ା (or 𝑇ି) are classiϐied.

3.4.2 Results and Discussions

The experimental result of accuracy is shown in Figure 3.4. Let us compare the re-
sult using the binary-coding divergence to those of other methods. In most cases,
the accuracy of our classiϐier shows the highest value, and only in some cases
other methods are more accurate than our method (e.g., low dimensional datasets
in yeast). This result shows the robustness of our classiϐier for various datasets.
The simple process “separation by encoding” of our theoretical background might
cause this robustness.

Moreover, results of other methods highly depend on kinds of datasets. For
example, 1- and 5-nearest neighbor methods are better than SVMs in ionosphere,
but are worse in abalon. This means that these methods require adjustment of
parameters depending on datasets. However, our method has no parameters and
does not need any adjustment. Thus we can apply our method effectively without
special background knowledge about datasets.

3.5 Summary

In this chapter, we have proposed a novel measure of the difference between sets,
called the coding divergence, and integrated discretization of analog data and learn-
ing of models that explains given data through computational learning of it, where
the extracted model corresponds to the minimum open set in the Cantor space
Σఠ . The key idea is separation of intervals, which corresponds to realization of an
encoding process of analog data by a mathematical embedding of the Euclidean
space into the Cantor space. Furthermore, we have constructed a classiϐier, the
lazy learner using the coding divergence, and shown the robust performance of it
by empirical experiments.

Our mathematical framework is general and has possibility to develop further
in the ϐield of machine learning and data mining, since any type of datasets can be
handled through an appropriate embedding from such objects to the Cantor space.
This approach is new and, intuitively, opposite to the one using kernel functions.

For any other measures or metrics used in learning, the property of invariance
is usually required to guarantee the soundness of them. Since the difference be-
tween two coding divergences is used for learning, providing the invariance of the
difference with respect to geometric transformation, such as parallel translation,
rotation, and other afϐine transformations, is an important future work.

Furthermore, since our proposed measure is quite simple, it can be applied to
various tasks in machine learning and data mining. For example, we can measure
the difference between clusters by the coding divergence. This means that we can
perform hierarchical clustering using the coding divergence directly. Thus apply-
ing our measure to such tasks is a future work.

Another future work is an application for other actual datasets. For example,
image matching is an important topic in computer vision, where each image is as-
sumed to be a set of real vectors. One of well-known distances is the Hausdorff
metric used in the previous chapter, and some metrics based on the Hausdorff

56 CODING DIVERGENCE

0.5

0.4

0.45

0.55

A
cc

ur
ac

y

0.5

0.8

0.8
0.7
0.6
0.5A

cc
ur

ac
y

1.0

0.7

A
cc

ur
ac

y

0.8

0.9

1.0 1.0

0.8

0.6A
cc

ur
ac

y

0.4

0.5

0.45

0.7

0.5

0.6

0.6
0.7
0.8
0.9

0.5

0.4

A
cc

ur
ac

y

0.6

0.7
0.6

0.9

0.8

(1, 10) (2, 10) (3, 10) (1, 30) (2, 30) (3, 30)

(Number of attributes, Size of each data set) (Number of attributes, Size of each data set)

(1, 10) (2, 10) (3, 10) (1, 30) (2, 30) (3, 30)

abalon transfusion

sonar

segmentation ionosphere

glass

madelon magic

waveform yeast

Binary-coing divergence
SVM (RBF kernel)
SVM (polynomial kernel)
1−nearest neighbor
5−nearest neighbor

Figure 3.4 | Experimental results of accuracy using real-valued datasets collected fromUCI repository. We applied
our classifier (using the binary-coding divergence) and other four classificationmethods: SVMwith the RBF kernel,
SVM with the polynomial kernel, k-nearest-neighbor classifiers (k = 1, 5), to ten real-valued datasets: abalon,
transfusion, sonar, glass, segmentation, ionosphere,madelon,magic,waveform, and yeast. We examined six cases:
the number of used attributes are 1, 2, or 3, and the size of each sampled training/test datasets are 10 or 30.

3.6 OUTLOOK: DATA STREAM CLASSIFICATION ON TREES 57

metric have been proposed (Huttenlocher et al., 1993; Zhao et al., 2005). Trivially
our method can be applied to such topics. In preliminary experiments, we have
checked that the accuracy of classiϐication using the coding divergence is better
than that using the Hausdorff metric. Thus our method might be a better classiϐier
than that with the Hausdorff metric.

3.6 Outlook: Data Stream Classification on Trees

In this section, we show our preliminary results as outlook of the coding diver-
gence: classiϐication of data streams. Machine learning from data streams (Bab- data stream
cock et al., 2002), which rapidly grow without limit, is one of challenging prob-
lems and, to date, many techniques have been proposed (Aggarwal et al., 2004;
Aggarwal and Yu, 2010; Gaber et al., 2005; Gama and Kosina, 2011). For instance,
Domingos and Hulten (2000) proposed VFDT for data stream classiϐication, which
learns a decision tree whose size is kept small by using Hoeffding bounds. How-
ever, since the amount of data increasingly grows like the data deluge², a more
scalable and effective algorithm is required.

We construct an algorithm, called CODE (Classiϐier with the binary encODing
on trEes), for classiϐication of numerical data streams. It incrementally constructs
a trie-like tree structure from received labeled data by discretizing them based on trie
the binary encoding scheme. The coding divergence is used to measure the simi-
larity between stored labeled data on a tree and an unlabeled datum. The succinct
tree structure leads fast computation of the coding divergence, which can be ap-
plied to massive data streams.

3.6.1 CODE approach

We revise the coding divergence to evaluate the similarity between a set of stored
labeled data points (training data) 𝑋 and an unlabeled data point (test datum) 𝑥.

Deϐinition 3.10: Similarity based on the binary encoding
Given a dataset 𝑋 and a datum 𝑥, deϐine

𝑠(𝑥; 𝑋) ≔ 1
#𝑋 min ൛ 𝜔௑(↑𝑊) ห ↑𝑊 ⊇ 𝜑ଶ(𝑋) and ↑𝑊 ∩ {𝜑ଶ(𝑥)} = ∅ ൟ ,

where

𝜔௑(↑𝑤) ≔ |𝑤| ⋅ #(↑𝑤 ∩ 𝜑ଶ(𝑋)) and

𝜔௑(↑𝑊) ≔ ෍
௪∈ௐ

𝜔௑(↑𝑤).

Note that if we deϐine 𝜔௑(↑𝑤) ≔ |𝑤|, 𝑠(𝑥; 𝑋) is exactly the same as the directed
coding divergence𝐷(𝑋; {𝑥}), thus the similarity 𝑠(𝑥; 𝑋) can be viewed as weighted
coding divergence between 𝑥 and 𝑋.

Next, we show that the similarity is effectively calculated using a trie-like data
structure, which naturally extends the domain of data from ℐௗ toℝௗ . Procedure 3.3

²This phrase is from the special issue of Science (http://www.sciencemag.org/site/special/
data/).

http://www.sciencemag.org/site/special/data/
http://www.sciencemag.org/site/special/data/

58 CODING DIVERGENCE

Figure 3.5 | Examples of calculating
similarities. White and black points
are labeled and unlabeled data, re-
spectively. In the left-hand side, the
similarity between labeled and unla-
beled data is ((3 + 5 + 3) ⋅ 2)/11 =
2. In the right-hand side, the similar-
ity is ((3 + 3) ⋅ 2+ (1+ 2+ 2) ⋅ 4)/11
= 32/11 = 2.91.

constructs a tree 𝒯 from labeled data, which corresponds to training phase for
making a model, and computes the similarity between 𝑥 and𝒯 if the input is unla-
beled, which corresponds to test phase using the model. In any tree 𝒯, we assume
that every node 𝑣 has three properties: key(𝑣), org(𝑣), and num(𝑣), where key(𝑣)
is the key of 𝑣, org(𝑣) is a value of an original datum pointed from 𝑣, and num(𝑣)
is the number of leaf nodes of 𝑣. Then, for any unlabeled 𝑥, the similarity between
𝑥 and 𝒯 computed by Procedure 3.3 is exactly the same as the similarity 𝑠(𝑥; 𝑋).

The binary encoding process of 𝑥 is performed by the simple arithmetic oper-
ation ⌊𝑥 ⋅ 2௞⌋ at each discretization level 𝑘, and this operation is applicable to any
real number inℝ. We thus can apply our algorithm to any dataset, where each da-
tum is a point in the 𝑑-dimensional Euclidean spaceℝௗ . Figure 3.5 illustrates two
examples of computing the similarity on trees.

Procedure 3.3 incrementally updates a tree𝒯 and its time complexity is𝑂(𝑁+
𝐷), where𝑁 = max௩∈𝒯 #{𝑣′ ∈ 𝒯 ∣ 𝑣′ is a child of 𝑣} and𝐷 is the maximum depth of
𝒯. The number𝑁 grows exponentially when the dimension 𝑑 increases. To escape
from this “curse of dimensionality”, we introduce the additional input parameter
𝑎 and we do not add a node if ∑ௗ

௝ୀଵ |𝑐௝ − 𝑐′௝| ≤ 𝑎 holds for some 𝑣’s child 𝑣′ such
that key(𝑣′) = (𝑐′ଵ, … , 𝑐′ௗ) at the line 4 in Procedure 3.3.

Here we present the entire CODE algorithm in Procedure 3.4, which achieves
multi-class classiϐication from numerical data streams using the similarity deϐined
above. Let ℒ = {𝑙ଵ, 𝑙ଶ, … , 𝑙௠} be the domain of class labels. CODE makes 𝑚 trees
𝒯௟భ , 𝒯௟మ ,… ,𝒯௟೘ for respective labels using Procedure 3.3 from labeled data and, if it
receives an unlabeled datum, it computes the similarity for each tree and classiϐies
the datum to the class whose similarity is maximum.

3.6.2 Experiments

We experimentally evaluate CODE to determine its scalability and effectiveness.

Methods

We used Mac OS X version 10.6.5 with two 2.26-GHz Quad-Core Intel Xeon CPUs
and 12 GB of memory. CODE was implemented in C and compiled with gcc 4.2.1,
which can be used in R, version 2.12.2 (R Development Core Team, 2011).

3.6 OUTLOOK: DATA STREAM CLASSIFICATION ON TREES 59

Procedure 3.3: Construction of tree and calculation of the similarity

Input: Data point 𝑥 and tree 𝒯
Output: Updated tree 𝒯 or the similarity between 𝑥 and 𝒯
function TėĊĊ(𝑥, 𝒯)
1: 𝑘 ← 1, 𝑣 ← the root of 𝒯
2: repeat
3: (𝑐ଵ, … , 𝑐ௗ) ← (⌊𝑥ଵ ⋅ 2௞⌋, … , ⌊𝑥ௗ ⋅ 2௞⌋)
4: if a node 𝑣 has a child 𝑣′ with key(𝑣′) = (𝑐ଵ, … , 𝑐ௗ) then
5: if 𝑥 is unlabeled then
6: 𝑠 ← 𝑠 + ∑{num(𝑢) ⋅ 𝑘 ⋅ 𝑑 ∣ 𝑢 is a brother of 𝑣}
7: end if
8: if a node 𝑣′ is a leaf then
9: 𝑦 ← org(𝑣′)

10: add a node 𝑣′′ as a child of 𝑣′,
where key(𝑣′′) = (⌊𝑦ଵ ⋅ 2௞⌋, … , ⌊𝑦ௗ ⋅ 2௞⌋) and org(𝑣′′) = 𝑦

11: end if
12: 𝑣 ← 𝑣′
13: else
14: if 𝑥 is labeled then
15: add a 𝑣’s child 𝑣′, where key(𝑣′) = (𝑐ଵ, … , 𝑐ௗ) and org(𝑣′) = 𝑥
16: return 𝒯
17: else if 𝑥 is unlabeled then
18: return (𝑠 + num(𝑣) ⋅ 𝑘 ⋅ 𝑑) / the number of leaf nodes of 𝒯
19: end if
20: end if
21: 𝑘 ← 𝑘 + 1
22: until forever

To evaluate scalability with respect to the data size, synthetic data were gen-
erated randomly using the R clusterGeneration package (Qiu and Joe, 2006),
where the parameter sepVal was 0.35, 𝑑 = 5, and the number of data points 𝑛 =
1, 000, 000. The number of classes was 5. We used 990, 000 data as labeled data
to evaluate scalability in constructing trees and the remaining 10, 000 data as un-
labeled test data to check accuracy of classiϐication. Moreover, to check effectivity
in classiϐication, ϐive real datasets were collected from the UCI machine learning
repository (Frank and Asuncion, 2010): iris, waveform, vertebral, wine, and yeast,
and we obtained accuracy by ten-fold cross validation.

We adopted two tree-based methods as control: one is the tree method imple-
mented in theRtree package as a typical tree-based batch classiϐication algorithm,
and the other is VFDT (Domingos and Hulten, 2000) which is a representative fast
tree-based classiϐication algorithm for data streams. We used VFDT implemented
as a module of the VFML toolkit (Hulten and Domingos, 2003). Notice that, since
the tree method in R is a batch algorithm, we ϐirst stored all data and applied the
method to them, whereas CODE and VFDT incrementally make (train) trees when-
ever labeled data arrive.

60 CODING DIVERGENCE

Procedure 3.4: CODE procedure

Input: Data stream 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, …
Output: Sequence of labels for each unlabeled datum
1: repeat
2: read 𝑥௜
3: if 𝑥௜ is labeled then
4: 𝒯௟ ← TėĊĊ(𝑥௜ , 𝒯௟), where 𝑥௜ ’s label is 𝑙
5: else if 𝑥௜ is unlabeled then
6: output argmax௟∈ℒTėĊĊ(𝑥௜ , 𝒯௟)
7: end if
8: 𝑖 ← 𝑖 + 1
9: until forever

Results and Discussion

Figure 3.6 shows results; running time and accuracy of classiϐication, for synthetic
data. Since the tree construction algorithm of CODE is simple, it is faster than the
tree algorithm in R and VFDT, especially for large datasets. Moreover, accuracy of
CODE is higher than VFDT when the data size is small. These results indicate that
CODE is a scalable high-throughput algorithm and can be applied for classiϐication
of massive data stream.

In real UCI datasets, CODE is competitive compared to the tree method and
VFDT (Figure 3.7) and shows the best performance in two datasets (waveform and
vertebral). Thus CODE should work efϐiciently and effectively for various size of
datasets including small and large datasets.

To summarize, CODE has been shown to be competitive compared to other al-
gorithms in terms of scalability and effectiveness. We will continue to investigate
the presented approach. To treat more complex data streams, such as a stream
containing concept drift, is one of future works.

3.6 OUTLOOK: DATA STREAM CLASSIFICATION ON TREES 61

0.0

0.2

0.4

0.6

0.8

1.0

Number of data

A
cc

ur
ac

y
0 2×105 4×105 6×105 8×105 10×105

0

5

10

15

Number of data

Ru
nn

in
g

tim
e

(s
)

0 2×105 4×105 6×105 8×105 10×105

CODE
Tree
VFDT

Figure 3.6 | Experimental results for
synthetic data.

A
cc
ur
ac
y

0.0

0.2

0.4

0.6

0.8

1.0

iris waveform vertebral yeastwine

CODE
Tree
VFDT

Figure 3.7 | Experimental results for
real data. Data showmean ± s.e.m.

4

MINIMUM CODE LENGTH AND
GRAY CODE FOR CLUSTERING

CđĚĘęĊėĎēČ is a fundamental task in data analysis, and many clustering algo-
rithms have been developed in the ϐields of machine learning and knowledge

discovery (Berkhin, 2006; Halkidi et al., 2001; Jain et al., 1999a). Several clustering
algorithms have been recently proposed that focus on the compression of data.compression

Kontkanen et al. (2005) proposed the minimum description length (MDL) ap-minimum description length (MDL)
proach to clustering by taking advantage of an information theoretic framework.
However, data encoding has to be optimized to ϐind the best clusters; that is, all
encoding schemes are considered within the clustering process under the MDL
criterion. As a result, their approach takes quadratic time with respect to the data
set size and can only be handled in practice using a stochastic algorithm (Kon-
tkanen and Myllymäki, 2008). Cilibrasi and Vitányi (2005) proposed a clustering
algorithm based on the Kolmogorov complexity. Since their method measures theKolmogorov complexity
distance between two data points on the basis of compression of ϐinite sequences
(i.e., discrete variables), it is difϐicult to apply it to multivariate data of continuous
variables. Moreover, although there are other approaches (Keogh et al., 2007; Li
et al., 2001) that focus on compression of data, they perform simple agglomerative
hierarchical clustering, so it takes quadratic time with respect to the data set size.
These approaches are therefore not suitable for clustering massive data sets.

Here we propose a new measure, called the minimum code length (MCL), tominimum code length (MCL)
score the quality of a given clustering result under a ϔixed encoding scheme. This
use of ϐixed encoding enables the performance of fast (i.e., linear complexity with
respect to the data set size) and exact clustering since we do not need to optimize
data encoding. We present a clustering algorithm, called COOL (COding-Oriented
cLustering), that always ϐinds the best clusters; i.e., the globally optimal clusters
which minimizes MCL, and requires only the lower bounds for the number and size
of the clusters. The discretization of continuous variables with the ϐixed encoding
scheme coincides with the clustering process itself — a hierarchy of clusters is
introduced automatically by increasing the accuracy of discretization.

Mathematically, an encoding, or embedding, is a mapping from real numbers toembedding
inϐinite sequences over some alphabet (Tsuiki, 2002), and discretization is realized

MINIMUM CODE LENGTH AND GRAY CODE FOR CLUSTERING 63

0 0.5 1

Binary embedding Gray-code embedding

0 1

00 01

0 0.5 1

0 1

00 01 11 10

Level-1

Level-2

0.25 0.75 0.25 0.75

000 011010
Level-3

001

Figure 4.1 | Examples of computing MCL with binary (left) or Gray code (right) embedding. These one-
dimensional data sets are in [0,1] and partitioned into three clusters, ○, ◊, and ∆. Level means the length of
each prefix. With binary embedding, cluster ∆ is separated at level 1, and○ and ◊ are separated at level 2. They
are encoded by 1, 00, and 01, respectively, so the MCL is 1 + 2 + 2 = 5. With Gray code embedding, the intervals
overlap, and adjacent clusters are merged at each level. As a result, ∆ is separated at level 2, and ○ and ◊ are
separated at level 3. Their representatives are {11,10}, {000,001}, and {011,010}, respectively, so the MCL is 4 + 6
+ 6 = 16.

by truncation of inϐinite sequences. For example, in the binary embedding 𝜑୆, ev-
ery real number in [0, 1] is translated into an inϐinite sequence composed of 𝟶 and
𝟷; e.g., 𝜑୆(0) = 𝟶𝟶𝟶… , 𝜑୆(0.2) = 𝟶𝟶𝟷… , and 𝜑୆(0.4) = 𝟶𝟷𝟷… , where the ϐirst
bit is𝟶 if the value is in the interval [0, 0.5] and𝟷 if in (0.5, 1]. If these sequences are
truncated at the ϐirst bit, all of them become 𝟶, and hence they are considered as in
the same cluster since they cannot be distinguished. If they are then truncated at
the second bit, both 0 and 0.2 become 𝟶𝟶, and 0.4 becomes 𝟶𝟷. Thus, two clusters
are generated: 𝐶ଵ = {0, 0.2} and 𝐶ଶ = {0.4}. This means that representatives of
𝐶ଵ and 𝐶ଶ are 𝟶𝟶 and 𝟶𝟷, respectively. Finally, if they are truncated at the third bit,
0 and 0.2 are separated. The hierarchy is therefore constructed as {{0, 0.2, 0.4}},
{{0, 0.2}, {0.4}}, and {{0}, {0.2}, {0.4}}.

The complexity of making clusters can be measured by the length of the cluster
representatives. In the above example, 2 + 2 = 4 for clusters {0, 0.2} and {0.4}
(𝟶𝟶 and 𝟶𝟷), and 3 + 3 + 2 = 8 for {0}, {0.2}, and {0.4} (𝟶𝟶𝟶, 𝟶𝟶𝟷, and 𝟶𝟷). We
call these values the MCL since we cannot distinguish a pair of data points from
different clusters if their truncated codes are shorter than the MCL.

Since COOL does not optimize an embedding scheme within the clustering pro-
cess, the clustering result strongly depends on the embedding used. This means
that we have to carefully choose an appropriate embedding for effective clustering.
In this chapter, we consider the Gray code as an embedding scheme for COOL — Gray code
resulting in an algorithm we call G-COOL. Gray code was originally developed for
binary encoding of natural numbers and has become especially important in con-
version between analog and digital information (Knuth, 2005). From the geomet-
rical point of view, Gray code embedding is the partitioning of each interval into
overlapping smaller intervals. This enables clusters with arbitrary shapes to be
found, which cannot be done with binary embedding. There is theoretical support
for clustering by G-COOL as shown in Lemma 4.9 and Theorem 4.11. Figure 4.1
illustrates examples of computing the MCL with binary and Gray code embedding.

The motivation for using Gray code scheme comes from Computable Analy-

64 MINIMUM CODE LENGTH AND GRAY CODE FOR CLUSTERING

sis (Weihrauch, 2000), a well-established mathematical framework for address-
ing analytical and computational aspects of real numbers through representation
of real numbers as inϐinite sequences. Computability for real numbers depends
on the embedding method used, and computation makes sense only if the method
meets a key mathematical property: “admissibility” (see the book (Weihrauch,
2000) for its mathematical deϐinition and properties). It is thus natural that the
clustering results depends on the embedding method. Gray code has been shown
to be admissible (Tsuiki, 2002) whereas binary embedding is not, and this prop-
erty is a key for embedding that can detect arbitrarily shaped clusters.

This chapter is organized as follows: Section 4.1 introduces the MCL, and Sec-
tion 4.2 gives a formal deϐinition of clustering based on the MCL and explains the
integration of COOL with the computation of the MCL. In Section 4.3, we introduce
Gray code embedding and analyze G-COOL theoretically. Section 4.4 describes the
experiments, presents the results, and discusses them. Section 4.5 summarized
the key points with reviewing related work.

RelatedWork

Many types of shape-based clustering, or spatial clustering, methods have been
proposed for ϐinding arbitrarily shaped clusters, including partitional algorithms
(Chaoji et al., 2009, 2011), the mass-based clustering algorithm (Ting and Wells,
2010), density-based clustering algorithms (e.g., DBSCAN (Ester et al., 1996) and
DENCLUE (Hinneburg and Keim, 1998)), agglomerative hierarchical clustering al-
gorithms (e.g., CURE (Guha et al., 1998), CHAMELEON (Karypis et al., 1999)), and
grid-based algorithms (e.g., STING (Wang et al., 1997) and Wave Cluster (Sheik-
holeslami et al., 1998)). However, most of them are not practical. Their clustering
results are sensitive to the input parameters, which have to be tuned manually, so
they work well only if all parameters are tuned appropriately by the user. As a
result, these methods are not well suited for users who are not specialized in ma-
chine learning. Furthermore, most of them are not scalable: their time complex-
ity is quadratic or cubic with respect to data size. Compared to these methods,
G-COOL is robust to the input parameters and always ϐinds the globally optimal
clusters under the MCL criterion. Moreover, G-COOL is usually faster than most of
these methods since the time complexity is linear with respect to data size.

Many cluster validity methods have been proposed for quantitative evaluation
of clustering results (Handl et al., 2005). These measures are usually divided into
two categories: internal (e.g., connectivity and Silhouette width) and external (e.g.,
𝐹-measure and Rand index). The internal measures are intrinsic to actual cluster-
ing while the external measures need information that may not be available in an
actual situation. Our proposed measure, MCL, can be categorized as an internal
measure. Its effectiveness has been shown experimentally (see Section 4.4).

Notation

In the following, ℝௗ denotes the 𝑑-dimensional Euclidean space. A data point 𝑥 is
a vector inℝௗ , and a dataset 𝑋 is a ϐinite set of data points. For a pair of sets 𝑋 and
𝑌, 𝑋 ⧵ 𝑌 means the relative complement of 𝑌 in 𝑋.

Clustering is the partition of a dataset𝑋 into𝐾 subsets𝐶ଵ, … , 𝐶௄ , called clusters,
where 𝐶௜ ≠ ∅, 𝐶௜ ∩ 𝐶௝ = ∅ with 𝑖 ≠ 𝑗, and ⋃௜∈{ଵ,…,௄} 𝐶௜ = 𝑋. Here we say that a
set 𝒞 = {𝐶ଵ, … , 𝐶௄} holding the above properties is a partition of 𝑋 and denote the

4.1 MINIMUM CODE LENGTH 65

set of all possible partitions by 𝒞(𝑋); i.e., 𝒞(𝑋) = {𝒞 ∣ 𝒞 is a partition of 𝑋}. For a
cluster 𝐶, #𝐶 denotes the number of data points in 𝐶.

The set of ϐinite and inϐinite sequences over an alphabet Σ is denoted by Σ∗
and Σఠ , respectively. The length |𝑤| of a ϐinite or an inϐinite sequence 𝑤 is the
number of positions for symbols other than ⊥ (the undeϐinedness character) in𝑤.
For example, if𝑤 = 𝟷𝟷⊥𝟷𝟶𝟶⊥⊥⊥… , |𝑤| = 5. For a set of sequences𝑊, the size of
𝑊 is deϐined by |𝑊| ≔ ∑௪∈ௐ |𝑤|.

An embedding ofℝௗ is an injection 𝜑 fromℝௗ to Σఠ (cf. Subsection 3.2.2). For
a pair of inϐinite sequences 𝑝, 𝑞, we write 𝑝 ≤ 𝑞 if 𝑝(𝑖) = 𝑞(𝑖) for all 𝑖with 𝑝(𝑖) ≠ ⊥,
where 𝑝(𝑖) denotes the 𝑖th position (including 0) of 𝑝. This means that 𝑞 is more
speciϐic than 𝑝 since ⊥ denotes undeϐinedness. Moreover, if 𝑤⊥ఠ ≤ 𝑝 for 𝑤 ∈ Σ∗,
we write 𝑤 ⊏ 𝑝 (𝑤 is a preϐix of 𝑝). Remember that ↑𝑤 = {𝑝 ∈ range(𝜑) ∣ 𝑤 ⊏ 𝑝}
for𝑤 ∈ Σ∗ and ↑𝑊 = {𝑝 ∈ range(𝜑) ∣ 𝑤 ⊏ 𝑝 for some𝑤 ∈ 𝑊} for𝑊 ⊆ Σ∗.

4.1 Minimum Code Length

The minimum code length, or MCL, is used to measure partitions under a ϐixed
embedding 𝜑. We deϐine, for 𝑝 ∈ range(𝜑) and 𝑃 ⊂ range(𝜑),

Φ(𝑝∣𝑃) ≔ ቊ 𝑤 ∈ Σ∗ ቤ 𝑝 ∈ ↑𝑤, and 𝑃 ∩ ↑𝑣 = ∅
for all 𝑣 with |𝑣| = |𝑤| and 𝑝 ∈ ↑𝑣 ቋ .

Every element in Φ(𝑝 ∣ 𝑃) is a preϐix of 𝑝 that discriminates 𝑝 from 𝑃. Trivially,
Φ(𝑝∣𝑃) = ∅ if 𝑝 ∈ 𝑃.

The MCL is introduced here in accordance with the above preparations.

Deϐinition 4.1: MCL
Given an embedding 𝜑, for a partition 𝒞 = {𝐶ଵ,… , 𝐶௄} of a dataset 𝑋, we deϐine

MCL(𝒞) ≔ ෍
௜∈{ଵ,…,௄}

𝐿௜(𝒞),

where

𝐿௜(𝒞) ≔ min൞ |𝑊| ተ
𝜑(𝐶௜) ⊆ ↑𝑊 and

𝑊 ⊆ ራ
௫∈஼೔

Φ(𝜑(𝑥) ∣ 𝜑(𝑋 ⧵ 𝐶௜)) ൢ .

Intuitively, this gives the code length of the maximally compressed representatives
of a given partition through discretization using ϐixed embedding 𝜑 since the fol-
lowing property holds: For a partition𝒞 of𝑋, if we discretize each data point 𝑥 ∈ 𝑋
into a ϐinite sequence 𝑐(𝑥) with 𝜑 (i.e., 𝑐(𝑥) ⊏ 𝜑(𝑥)) such that ห ⋃௫∈௑ 𝑐(𝑥) ห <
MCL(𝒞), then there must exist a pair of data points 𝑥, 𝑦 ∈ 𝑋 satisfying ↑𝑐(𝑥) ∩
↑𝑐(𝑦) ≠ ∅ and 𝑥 ∈ 𝐶௜ , 𝑦 ∈ 𝐶௝ with 𝑖 ≠ 𝑗. Therefore, we cannot discriminate 𝑥 from
𝑦 and thus cannot ϐind the partition 𝒞 from compressed codes 𝑐(𝑋).
Example 4.2
Suppose we use binary embedding 𝜑୆. Assume a one-dimensional dataset 𝑋 =
{0.1, 0.2, 0.8, 0.9} and partitions 𝒞ଵ = {{0.1, 0.2}, {0, 8, 0.9}} and 𝒞ଶ = {{0.1},

66 MINIMUM CODE LENGTH AND GRAY CODE FOR CLUSTERING

{0.2, 0.8}, {0.9}}. Then, MCL(𝒞ଵ) = 𝐿ଵ(𝒞ଵ)+𝐿ଶ(𝒞ଵ) = 1+1 = 2 since𝜑୆([0, 0.5])
= ↑𝟶 and 𝜑୆((0.5, 1]) = ↑𝟷, and MCL(𝒞ଶ) = 𝐿ଵ(𝒞ଶ) + 𝐿ଶ(𝒞ଶ) + 𝐿ଷ(𝒞ଶ) = 3 + (3 +
3) + 3 = 12 because we have 𝜑୆([0, 0.125]) = ↑𝟶𝟶𝟶, 𝜑୆((0.125, 0.25]) = ↑𝟶𝟶𝟷,
𝜑୆((0.75, 0.875]) = ↑𝟷𝟷𝟶, and 𝜑୆((0.875, 1]) = ↑𝟷𝟷𝟷. Note that 𝜑୆([0, 0.25]) =
↑𝟶𝟶, hence 0.1 and 0.2 cannot be discriminated using code 𝟶𝟶, and that 𝜑୆((0.75,
1]) = ↑𝟷𝟷, hence 0.8 and 0.9 cannot be discriminated using 𝟷𝟷.
The MCL is calculated for 𝑂(𝑛𝑑) time complexity by using a radix sort, where 𝑛 is
the size of𝑋 (i.e.,𝑛 = #𝑋), and𝑑 is the dimension of𝑋. This is why if the discretized
dataset {𝑝(0)𝑝(1)…𝑝(𝑘− 1) ∣ 𝑝 ∈ 𝜑(𝑋)} at level 𝑘 is sorted in advance, each data
point simply needs to be compared with the subsequent one for each dimension,
and the MCL is obtained by checking from 𝑘 = 1, 2, 3, … .

4.2 Minimizing MCL and Clustering

We formulate clustering using the MCL as a criterion and describe clustering algo-
rithm COOL, which ϐinds the globally optimal partition that minimizes the MCL.

4.2.1 Problem Formulation

The clustering problem with the MCL is deϐined as follows.

Deϐinition 4.3: Clustering under the MCL criterion
Clustering of a dataset𝑋 under theMCL criterionmeans ϐinding the globally opti-
mal partition that minimizes the MCL with more than𝐾 clusters; that is, ϐinding
𝒞୭୮ such that

𝒞୭୮ ∈ argmin
𝒞∈𝒞(௑)ಱ಼

MCL(𝒞),

where 𝒞(𝑋)ஹ௄ = {𝒞 ∈ 𝒞(𝑋) ∣ #𝒞 ≥ 𝐾}.

In this framework, we assume that a lower bound on the number of clusters 𝐾 is
given to avoid overgeneralization since, if we search for the optimal partition𝒞୭୮ in
𝒞(𝑋) (i.e., all possible partitions) instead of 𝒞(𝑋)ஹ௄ , we always have the nonsense
result 𝒞୭୮ = {𝑋}.

4.2.2 COOL Algorithm

Our COOL algorithm efϐiciently solves the optimization problem (Deϐinition 4.3) by
integrating the computation of MCL within the clustering step. By contrast, naïve
approach that would compare the MCLs of all possible partitions would result in an
algorithm with exponential time complexity. The pseudo-code of COOL is shown
in Algorithm 4.1.

COOL is a level-wise clustering algorithm that ϐinds the optimal partition 𝒞୭୮
by enumerating level-𝑘 partitions (𝑘 = 1, 2, 3, …).

Deϐinition 4.4: Level-k partition
For a dataset 𝑋 and an embedding 𝜑, the level-𝑘 partition

level-𝑘 partition
𝒞௞ is deϐined as fol-

lows: Every pair of data points 𝑥, 𝑦 ∈ 𝑋 are contained in the same cluster if and
only if 𝑣 = 𝑤 for some 𝑣 ⊏ 𝜑(𝑥) and 𝑤 ⊏ 𝜑(𝑦) with |𝑣| = |𝑤| = 𝑘.

4.2 MINIMIZING MCL AND CLUSTERING 67

Algorithm 4.1: COOL algorithm

Input: Dataset 𝑋, lower bound on the cluster size 𝐾, and noise parameter𝑁
Output: Optimal partition 𝒞୭୮ and noise data
Function CĔĔđ(𝑋, 𝐾, 𝑁)
1: Find partitions 𝒞ଵஹே , … , 𝒞௠ஹே such that #𝒞௠ିଵ

ஹே < 𝐾 ≤ #𝒞௠ஹே
2: (𝒞୭୮,MCL) ← FĎēĉCđĚĘęĊėĘ(𝑋, 𝐾, {𝒞ଵஹே , … , 𝒞௠ஹே})
3: return (𝒞୭୮, 𝑋 ⧵ ⋃𝒞୭୮)

Function FĎēĉCđĚĘęĊėĘ(𝑋, 𝐾, {𝒞௟ , … , 𝒞௠})
1: if 𝐾 = 1 then
2: return (𝒞௟ , |𝑊|), where 𝜑(⋃𝒞௟) ⊆ ↑𝑊 and |𝑤| = 𝑙 for all 𝑤 ∈ 𝑊
3: end if
4: Find 𝑘 such that #𝒞௞ିଵ < 𝐾 ≤ #𝒞௞
5: 𝒞୭୮ ← 𝒞௞
6: MCL ← MCL(𝒞௞)
7: for each 𝐶 in 𝒞௟ ∪ … ∪ 𝒞௞
8: 𝐿 ←min { |𝑊| ∣ 𝜑(𝐶) ⊆ ↑𝑊 and |𝑤| = 𝑗 for all 𝑤 ∈ 𝑊 }
9: (𝒞, 𝐿′) ← FĎēĉCđĚĘęĊėĘ(𝑋 ⧵ 𝐶, 𝐾 − 1, {𝒞௝ , … , 𝒞௞})

10: if 𝐿 + 𝐿′ < MCL then
11: 𝒞୭୮ ← 𝐶 ∪ 𝒞
12: MCL← 𝐿 + 𝐿′
13: end if
14: end for
15: return (𝒞୭୮,MCL)

This means that if 𝑥, 𝑦 ∈ 𝑋 are in the same cluster, there exists a chain of data
points 𝑧ଵ, 𝑧ଶ, … , 𝑧௠ (𝑚 ≥ 2) such that, for all 𝑖 ∈ {1, 2, … ,𝑚 − 1}, 𝑧ଵ = 𝑥, 𝑧௠ = 𝑦,
and 𝑤௜ = 𝑤௜ାଵ for some 𝑤௜ ⊏ 𝜑(𝑧௜) and 𝑤௜ାଵ ⊏ 𝜑(𝑧௜ାଵ) with |𝑤௜| = |𝑤௜ାଵ| = 𝑘.
Obviously, the level-𝑘 partition is determined uniquely. The time complexity of
ϐinding the level-𝑘 partition is 𝑂(𝑛𝑑), where 𝑛 and 𝑑 are the size and dimension
of the dataset, respectively, since, if the discretized dataset {𝑝଴𝑝ଵ…𝑝௞ିଵ ∣ 𝑝 ∈
𝜑(𝑋)} at level 𝑘 is initially sorted using a radix sort, clusters are constructed by
comparing each data point to the next data point for each dimension.

The most important feature of the level-𝑘 partition is that the optimal partition
𝒞୭୮ in Deϐinition 4.3 is obtained by searching for only clusters contained in the
level-𝑘 partition.

Lemma 4.5
For every cluster 𝐶 ∈ 𝒞୭୮, 𝐶 is contained in some level-𝑘 partition, that is, 𝐶 ∈ 𝒞௞
for some 𝑘 ∈ ℕ.

Proof. Let 𝒞 be a partition such that, for every 𝐶 ∈ 𝒞, 𝐶 ∈ 𝒞௞ for some 𝑘, and a pair
of clusters 𝐶, 𝐶′ ∈ 𝒞 is ϐixed. Then, from the deϐinition of the level-𝑘 partition, the
following condition holds: For all pairs of clusters 𝐷,𝐷′ such that 𝐷 ∪ 𝐷′ = 𝐶 ∪ 𝐶′
and 𝐷 ∩ 𝐷′ = ∅, we have MCL(𝒞) ≤ MCL(𝒞′), where 𝒞′ = (𝒞 ⧵ {𝐶, 𝐶′}) ∪ {𝐷, 𝐷′}.
Therefore, for the optimal partition 𝒞୭୮, 𝐶 ∈ 𝒞௞ with 𝑘 ∈ ℕ for all 𝐶 ∈ 𝒞୭୮.

68 MINIMUM CODE LENGTH AND GRAY CODE FOR CLUSTERING

The level-𝑘 partition has a hierarchical structure: For each cluster 𝐶 ∈ 𝒞௞ ,
there must exist a set of clusters 𝒟 ⊆ 𝒞௞ାଵ such that ⋃𝒟 = 𝐶. Thus, COOL works
through divisive hierarchical clustering. The MCL of the level-𝑘 partition used in
line 6 of the function FINDCLUSTERS in Algorithm 4.1 can thus be easily calculated:
Let 𝒞௞ be a set of clusters {𝐶ଵ, … , 𝐶௄}. For each 𝐶௜ and for the minimum level 𝑙
such that 𝐶௜ ∈ 𝒞௟ ,

𝐿௜(𝒞௞) = min{|𝑊| ∣ 𝜑(𝐶௜) ⊆ ↑𝑊 and |𝑤| = 𝑙 for all 𝑤 ∈ 𝑊}

holds. This means that we can obtain the MCL of the level-𝑘 partition by checking
only sequences with length 𝑙.

Next we show that COOL can solve the optimization problem in Deϐinition 4.3.

Proposition 4.6
The COOL algorithm (Algorithm 4.1) always outputs the globally optimal parti-
tion 𝒞୭୮.

Proof. Let #𝒞୭୮ = 𝐾. Then there must exist 𝑘 ∈ ℕ such that 𝐾 ≤ #𝒞௞ and #𝒞௞ᇱ <
𝐾 for all 𝑘′ < 𝑘 since the number of clusters in the level-𝑘 partition #𝒞௞ increases
monotonically with respect to increase of 𝑘. Fix a cluster 𝐶 ∈ 𝒞୭୮, and let 𝒞′୭୮ be
the optimal partition for the dataset𝑋⧵𝐶. Then we can easily check that 𝒞′୭୮∪{𝐶}
coincides with 𝒞୭୮. Moreover, from Lemma 4.5 and the deϐinition of the level-𝑘
partition, for all 𝐶 ∈ 𝒞୭୮, 𝐶 ∈ 𝒞௟ for some 𝑙 ∈ {1, … , 𝑘}. Thus, COOL ϐinds the
optimal partition 𝒞୭୮ by recursive computing in Algorithm 4.1 (lines 4 - 7) with
ϐixing each cluster in 𝒞ଵ ∪ … ∪ 𝒞௞ .

COOL can ϐind the globally optimal partition 𝒞୭୮ efϐiciently, and its time com-
plexity is 𝑂(𝑛𝑑) and 𝑂(𝑛𝑑 + 𝐾!) in the best and worst cases, respectively, since
ϐinding𝑚 partitions in the ϐirst line of the function COOL takes𝑂(𝑛𝑑), and the func-
tion FINDCLUSTERS takes 𝑂(𝐾!) in the worst case. Usually, 𝐾 ≪ 𝑛 holds, so complex-
ity becomes 𝑂(𝑛𝑑).

Furthermore, noise is directly removed by COOL using a lower bound on the
size of each cluster𝑁, which we call the noise parameter. For a partition 𝒞, we de-noise parameter
note the set {𝐶 ∈ 𝒞 ∣ #𝐶 ≥ 𝑁} by 𝒞ஹே . For example, let a dataset 𝑋 = {0.1, 0.4, 0.5,
0.6, 0.9} and 𝒞 = {{0.1}, {0.4, 0.5, 0.6}, {0.9}}. Then, 𝒞ஹଶ = {{0.4, 0.5, 0.6}}, and two
data points, 0.1 and 0.9, are detected as noise.

4.3 G-COOL: COOL with Gray Code

We use Gray code embedding for COOL, and show its powerful clustering ability
by theoretical analysis. We call COOL with Gray code embedding G-COOL.

4.3.1 Gray Code Embedding

Gray code embedding is illustrated in Figure 4.2. Its rich mathematical properties
are described elsewhere (Tsuiki, 2002). Gray code was originally simply binary
encoding of natural numbers, as mentioned in introduction. For example, natural
numbers 1, 2, … , 8 are represented in Gray code as 000, 001, 011, 010, 110, 111,
101, 100, whereas, in binary code, they are represented as 000, 001, 010, 011, 100,

4.3 G-COOL: COOL WITH GRAY CODE 69

0 0.5 1

0

1

2
3
5

Po
si

tio
n

γG(0.25) = 0⊥1000...

Figure 4.2 | Gray code embedding
φG. Position i is 1 if it is on the line,
⊥ if on the end point, and 0 oth-
erwise. Diagonal lines are auxiliary
lines. For example, if p = φG(0.25),
p = 0⊥1000… because position 0 is
not on the line, 1 is on the end point,
2 is on the line, and every i≥ 3 is not
on the line.

101, 110, 111. The importance of Gray code is that only one bit differs between
one code and its successor, that is, the Hamming distance between them is always
one. Here ℐ denotes the unit interval [0, 1] × … × [0, 1] ⊂ ℝௗ , and Σఠୄ,ௗ denotes
the set of inϐinite sequences for which, in each sequence, at most 𝑑 positions are
⊥. For example, if Σ = {𝟶, 𝟷} and 𝑑 = 2, then 𝟶⊥𝟷𝟶𝟶… ∈ Σఠୄ,ௗ , ⊥⊥𝟷𝟷𝟶… ∈ Σఠୄ,ௗ ,
and 𝟶⊥𝟷⊥⊥𝟶… ∉ Σఠୄ,ௗ . In the following, we consider only real vectors in ℐ.

Deϐinition 4.7: Gray code embedding
(One-dimensional) Gray code embedding Gray code embeddingis an injective function, 𝜑ୋ ∶ ℐ → Σఠୄ,ௗ
(𝑑 = 1), that maps 𝑥 ∈ ℐ to an inϐinite sequence 𝑝଴𝑝ଵ𝑝ଶ… : For each 𝑖, 𝑝௜ ≔ 𝟷 if

2ି௜𝑚− 2ି(௜ାଵ) < 𝑥 < 2ି௜𝑚+ 2ି(௜ାଵ)

holds for an odd number 𝑚, 𝑝௜ ≔ 𝟶 if the same holds for an even number 𝑚,
and 𝑝௜ ≔ ⊥ if 𝑥 = 2ି௜𝑚− 2ି(௜ାଵ) for some integer𝑚.

Moreover, by using the tupling function (see Equation (2.4)), we can deϐine 𝑑-
dimensional Gray code embedding 𝜑ௗ

ୋ ∶ ℐ → Σఠୄ,ௗ as

𝜑ௗ
ୋ(𝑥ଵ, … , 𝑥ௗ) ≔ ⟨𝜑ୋ(𝑥ଵ), … , 𝜑ୋ(𝑥ௗ)⟩.

We abbreviate 𝑑 of 𝜑ௗ
ୋ if it is understood from the context.

Example 4.8
For one-dimensional data points 𝑥 = 0.2, 𝑦 = 0.5, and 𝑧 = 0.7, we have 𝜑ୋ(𝑥) =
𝟶𝟶𝟷𝟶… , 𝜑ୋ(𝑦) = ⊥𝟷𝟶𝟶… , and 𝜑ୋ(𝑧) = 𝟷𝟷𝟷𝟶… with the Gray code embed-
ding, while 𝜑୆(𝑥) = 𝟶𝟶𝟶𝟷… , 𝜑୆(𝑦) = 𝟶𝟷𝟷𝟷… , and 𝜑୆(𝑧) = 𝟷𝟶𝟷𝟷… with the
binary embedding. For a two-dimensional data point (𝑥, 𝑦), we have 𝜑ୋ(𝑥, 𝑦) =
𝟶⊥𝟶𝟷𝟷𝟶𝟶𝟶… , and for a three-dimensional data point (𝑥, 𝑦, 𝑧), 𝜑ୋ(𝑥, 𝑦, 𝑧) = 𝟶⊥𝟷
𝟶𝟷𝟷𝟷𝟶𝟷𝟶𝟶𝟶… with Gray code embedding.

4.3.2 Theoretical Analysis of G-COOL

Here we show that G-COOL achieves internal cohesion and external isolation with-
out any distance calculation or data distribution. In the following, we measure the
distance between 𝑥, 𝑦 ∈ ℝௗ by the 𝐿ஶ metric, where the distance is deϐined by

𝑑ஶ(𝑥, 𝑦) ≔ max
௜∈{ଵ,…,ௗ}

ห𝑥௜ − 𝑦௜ห .

70 MINIMUM CODE LENGTH AND GRAY CODE FOR CLUSTERING

Figure 4.3 | Examples of level-1 and
2 partitionswith binary and Gray code
embedding.

id Value Level 1 Level 2
Binary Gray Binary Gray

a 0.14 𝟶 𝟶 𝟶𝟶 𝟶𝟶
b 0.48 𝟶 𝟶, ⊥𝟷 𝟶𝟷 𝟶𝟷, ⊥𝟷𝟶
c 0.51 𝟷 𝟷, ⊥𝟷 𝟷𝟶 𝟷𝟷, ⊥𝟷𝟶
d 0.73 𝟷 𝟷, ⊥𝟷 𝟷𝟶 𝟷𝟷, 𝟷⊥𝟷
e 0.77 𝟷 𝟷 𝟷𝟷 𝟷𝟶, 𝟷⊥𝟷

Level-1 partition

Gray-code embeddingBinary embedding

0 1

00 1001 11

0 1

⊥1

⊥10

00 1101 10

0⊥1 1⊥1

0 0.5 10.25 0.750 0.5 10.25 0.75

Level-2 partition

Lemma 4.9
For the level-𝑘 partition 𝒞௞ of a dataset 𝑋 with Gray code embedding 𝜑ୋ, two
data points 𝑥, 𝑦 ∈ 𝑋 are in the same cluster if 𝑑ஶ(𝑥, 𝑦) < 2ି(௞ାଵ) and are not in
the same cluster only if 𝑑ஶ(𝑥, 𝑦) ≥ 2ି(௞ାଵ).

Proof. From the deϐinition of Gray code embedding, if𝑑ஶ(𝑥, 𝑦) < 2ି(௞ାଵ) for 𝑥, 𝑦 ∈
𝑋, there must exist a ϐinite sequence 𝑤 with |𝑤| = 𝑘 such that 𝑤 ⊏ 𝜑ୋ(𝑥) and
𝑤 ⊏ 𝜑ୋ(𝑦). Thus, 𝑥 and 𝑦 are in the same cluster in the level-𝑘 partition 𝒞௞ . This
means that, if 𝑥 and 𝑦 are in the different clusters in 𝒞௞ , 𝑑ஶ(𝑥, 𝑦) ≥ 2ି(௞ାଵ).

Informally, the redundancy of Gray code embedding enables the powerful property
described in the above lemma, that is, for an inϐinite sequence 𝑝 = 𝜑ୋ(𝑥), there
may be two preϐixes, 𝑣ଵ ⊏ 𝑝 and 𝑣ଶ ⊏ 𝑝 with |𝑣| = |𝑤|.
Example 4.10
Let us consider the situation illustrated in Figure 4.3, where we have ϐive data
points: 𝑥a = 0.14, 𝑥b = 0.48, 𝑥c = 0.51, 𝑥d = 0.73, and 𝑥e = 0.77. In binary em-
bedding, the unit interval ℐ = [0, 1] is divided into two intervals [0, 0.5] and [0.5, 1]
at level-1, while it is divided into three intervals [0, 0.5], [0.25, 0.75], and [0.5, 1] in
Gray code embedding. Thus, there are three overlapping clusters {𝑥a, 𝑥b} (encoded
as 𝟶), {𝑥b, 𝑥c, 𝑥d} (encoded as⊥𝟷), and {𝑥c, 𝑥d, 𝑥e} (encoded as 𝟷). Actually, there is
only one cluster {𝑥a, 𝑥b, 𝑥c, 𝑥d, 𝑥e} since they are merged. At level-2, we have four
clusters with binary embedding although some data points such as 𝑥b and 𝑥c are
close. On the other hand, we have two natural clusters {𝑥a} and {𝑥b, 𝑥c, 𝑥d, 𝑥e}with
Gray code embedding.

Intuitively, this lemma theoretically supports the claim that G-COOL ϐinds nat-
ural clusters. For a data point 𝑥 ∈ 𝑋, we say that a data point 𝑦 ∈ 𝑋 is the nearest

4.4 EXPERIMENTS 71

0 0.5 1.0
0

0.5

1.0
G-COOL

0 0.5 1.0
0

0.5

1.0
COOL with binary embedding

0 0.5 1.0
0

0.5

1.0
K-means

Figure 4.4 | Clustering results for G-
COOL and COOL with binary embed-
ding (K=2,N=50) andK-means (K=
2). Dataset size is 10,500 (where 500
points are noise). G-COOL detects two
natural clusters. The other two meth-
ods cannot find such clusters.

neighbor of 𝑥 if 𝑦 ∈ argmin௫ᇱ∈௑𝑑ஶ(𝑥, 𝑥′).

Theorem 4.11
The optimal partition 𝒞୭୮ of a dataset 𝑋 generated by G-COOL has the following
property: For every data point 𝑥 ∈ 𝐶 with 𝐶 ∈ 𝒞୭୮ and #𝐶 ≥ 2, its nearest
neighbor 𝑦 ∈ 𝐶.

Proof. From Lemma 4.5, every cluster𝐶 ∈ 𝒞୭୮ is contained in𝒞௞ for some 𝑘. Thus,
from Lemma 4.9, any𝑥 ∈ 𝐶with𝐶 ∈ 𝒞୭୮,#𝐶 = 1or its nearest neighbor𝑦 ∈ 𝐶.

This property of Gray code (Lemma 4.9) enables clusters with the condition in
Theorem 4.11 to be quickly found, whereas the naïve solution results in more than
𝑂(𝑛ଶ). Figure 4.4 illustrates the results of G-COOL for a two-dimensional dataset
for which 𝐾-means could not ϐind natural clusters. We can see that COOL with
binary embedding also failed to ϐind such clusters.

4.4 Experiments

We empirically evaluate the effectiveness of G-COOL and the proposed measure,
MCL. We use low-dimensional synthetic and real datasets, which are common in
spatial clustering setting.

4.4.1 Methods

Environment

G-COOL was implemented in R version 2.12.2 (R Development Core Team, 2011),
and all experiments were performed in R. We used Mac OS X version 10.6.5 with
two 2.26-GHz Quad-Core Intel Xeon CPUs and 12 GB of memory.

Datasets

The synthetic datasets were used to evaluate robustness against the number of
clusters, the size of the datasets, and noise existence. They were randomly gen-
erated using the R clusterGeneration package (Qiu and Joe, 2006), and the pa-
rameters were set as follows: sepVal = 0.34, numNonNoisy = 2, numNoisy = 1,
numOutlier = 500, and rangeN = 𝑐(1000, 2000). We generated 20 datasets to
obtain the mean and s.e.m. (standard error of the mean). The size of each cluster

72 MINIMUM CODE LENGTH AND GRAY CODE FOR CLUSTERING

Figure 4.5 | Experimental results for
synthetic datasets. MCL and connec-
tivity should be minimized, and Sil-
houette width and adjusted Rand in-
dex should be maximized. Data show
mean ± s.e.m.

M
CL

Co
nn

ec
tiv

ity

Si
lh

ou
et

te
 w

id
th

A
dj

us
te

d
Ra

nd
 in

de
x

G-COOL
DBSCAN
K-means

Ru
nn

in
g

tim
e

(s
) 20

5

15

Number of clusters
2 4 6

0

10

50000

5000

Number of clusters
2 4 6

500

1000

1

100

Number of clusters
2 4 6

0.1

10

0.6

0.3

0.5

Number of clusters
2 4 6

0.4

1.0

0.3

0.9

Number of clusters
2 4 6

0.6

was around 1,500, so the size of the datasets varied from∼3,000 to∼10,500. Each
dataset was three-dimensional, where one dimension was composed of noise and
about 500 data point were added to each dimension as noise.

Five real datasets were collected from the Earth-as-Art website¹, which con-
tains geospatial satellite images (see Table 4.1 and Figure 4.7). Similar datasets
were used in experiments with the state-of-the-art study (Chaoji et al., 2011). Each
image was pre-processed using ImageJ software (Rasband, 1997–2011); they were
reduced to 200 × 200 pixels and translated into binary images.

With G-COOL, each dataset was translated using min-max normalization (Han
and Kamber, 2006) so that the dataset was in the unit interval ℐ, where each value
𝑥 of 𝑖th dimension 𝑋௜ of a dataset 𝑋 was mapped to 𝑥′ = (𝑥 − min𝑋௜)/(max𝑋௜ −
min𝑋௜) and the runtime for the translation was included in the G-COOL running
time.

Control Methods

As control methods, we used 𝐾-means and DBSCAN because 𝐾-means is the stan-
dard clustering algorithm and DBSCAN is a typical method for ϐinding arbitrarily
shaped clusters, and their source codes are publicly available. DBSCAN was exe-
cuted using the R fpc package. We tuned the parameters of DBSCAN to obtain the
best results.

Evaluation

With the synthetic datasets, performance was evaluated using internal and exter-
nal measures. As internal measures, we used the MCL (with Gray code), the con-
nectivity (takes values in [0,∞], to be minimized) (Handl et al., 2005), and the Sil-
houette width (takes values in [−1, 1], to be maximized) (Rousseeuw, 1987). As
an external measure, we used the adjusted Rand index (takes values in [−1, 1], to

¹http://eros.usgs.gov/imagegallery/

http://eros.usgs.gov/imagegallery/

4.4 EXPERIMENTS 73
M

CL

Co
nn

ec
tiv

ity

Si
lh

ou
et

te
 w

id
th

A
dj

us
te

d
Ra

nd
 in

de
x

Ru
nn

in
g

tim
e

(s
)

2.0

0.5

1.5

0 4 6
0

1.0

5000

3000

0

80

20

60

0

40

0.6

0.2

0.4

1.0

0.4

0.8

0.6

2 8 10
The noise parameter N

0 4 62 8 10

The noise parameter N
0 4 62 8 10 0 4 62 8 10 0 4 62 8 10

The noise parameter N The noise parameter N

The noise parameter N

0.2

0

4000

2000
1000

0

Figure 4.6 | Clustering speed and
quality for G-COOL and synthetic data-
sets. MCL and connectivity should be
minimized, and Silhouette width and
adjusted Rand index should be max-
imized. G-COOL shows robust per-
formance if the noise parameter N is
large enough. Data show mean ±
s.e.m.

be maximized) (Hubert and Arabie, 1985), which takes into account the ground
truth and is popular in the clustering literature. The measures were calculated us-
ing the R clValid (Brock et al., 2008), cluster (Maechler et al., 2005), and clues
(Chang et al., 2010) packages, respectively. For the real datasets, we used the MCL
and simply show scatter plots of the results since we had no information on the
ground truth.

4.4.2 Results and Discussion

The results obtained with the synthetic datasets (Figure 4.5) show that the quality
of clusters obtained with G-COOL is signiϐicantly higher for three of the four qual-
ity measures (determined by paired 𝑡-test) and is competitive for the other one
(adjusted Rand index). Moreover, it is faster than DBSCAN. These results show
that the MCL works reasonably well as a measure of cluster quality compared to
existing ones.

Note that we need to input only the lower bounds for the number and size of
the clusters in G-COOL, whereas we have to tune the parameters carefully in DB-
SCAN and other shape-based (spatial) clustering algorithms. Therefore, G-COOL
is more efϐicient and effective than existing clustering algorithms. Moreover, as
shown in Figure 4.6, cluster quality is stable with respect to the noise parame-
ter 𝑁 (i.e., lower bound on cluster size) even if the dataset contains noise, when
𝑁 is large enough. If 𝑁 is too small, then each noise is detected as a cluster. Thus,
when clustering using G-COOL, all we have to do is set the parameter large enough,
meaning that G-COOL is equally useful as 𝐾-means.

For all the real datasets, G-COOL ϐinds natural clusters (𝑁 was set as 50 for all
the datasets), as shown in Figure 4.7, whereas𝐾-means results in inferior cluster-
ing quality (we did not perform DBSCAN since it takes too much time and needs
manual tuning of the input parameters). Moreover, MCL of clustering results for
G-COOL is much smaller than those for 𝐾-means (Table 4.1). These results show
that G-COOL is robust and that it can ϐind arbitrarily shaped clusters without care-
ful tuning of the input parameters.

74 MINIMUM CODE LENGTH AND GRAY CODE FOR CLUSTERING

(a) Delta (b) Binary image (c) G-COOL (d) ௄-means

(e) Europe (f) Binary image (g) G-COOL (h) ௄-means

(i) Norway (j) Binary image (k) G-COOL (l) ௄-means

(m) Ganges (n) Binary image (o) G-COOL (p) ௄-means

(q) Dragon (r) Binary image (s) G-COOL (t) ௄-means

Figure 4.7 | Results for real datasets obtained from satellite images by G-COOL and K-means. G-COOL finds all
natural clusters whereas K-means does not.

4.5 SUMMARY 75

Name 𝑛 𝐾 Running time (s) MCL
G-COOL 𝐾-means G-COOL 𝐾-means

Delta 20748 4 1.158 0.012 4010 4922
Dragon 29826 2 0.595 0.026 3906 7166
Europe 17380 6 2.404 0.041 2320 12210
Norway 22771 5 0.746 0.026 1820 6114
Ganges 18019 6 0.595 0.026 2320 12526

Table 4.1 | Running time (in seconds)
and MCL for real datasets. In table,
n and K denote the number of data
points and clusters, respectively. Clus-
tering results are shown in Figure 4.7.

4.5 Summary

We have proposed an internal measure, the minimum code length (MCL), to evalu-
ate the results of clustering and presented a clustering algorithm COOL that always
ϐinds the globally optimal partition; i.e., clusters that have the minimum MCL. Intu-
itively, COOL produces the maximally compressed clusters using a ϐixed encoding
scheme and does not take optimization of encoding into account. Moreover, Gray
code is used for the encoding, resulting in an algorithm called G-COOL. Theoreti-
cally and empirically, G-COOL has been shown to be noise tolerant and to have the
ability to ϐind arbitrarily shaped clusters efϐiciently. The result is an effective solu-
tion to two essential problems, how to measure the goodness of clustering results
and how to ϐind good clusters.

G-COOL’s results are robust to changes in the input parameters, and does not
assume a data distribution and does not need a distance calculation. Thus, it can
be effectively applied to other machine learning tasks, such as anomaly detection.
Theoretical analysis of relationship between admissibility of encoding schemes in
computing real numbers and the ability of clustering to detect arbitrarily shaped
clusters is necessary future work.

5

CLUSTERING USING
BINARY DISCRETIZATION

TčĊ K-ĒĊĆēĘ ĆđČĔėĎęčĒ (MacQueen, 1967) is widely used due to its simplicity
and efϐiciency while it is one of the earliest clustering algorithms. The main

drawback is its limited clustering ability; that is, non-convex clusters cannot be
found and noise is not ϐiltered since the separation of data is based on a Voronoi
diagram. To ϐind clusters with arbitrary shapes, many spatial clustering, or shape-spatial clustering
based clustering, algorithms have been proposed (Han et al., 2001) (see Section 5.4shape-based clustering
for related work). One of major applications of such algorithms is the identiϐica-
tion of similar regions from geographical databases. However, most of them are
not scalable. Their time complexity is quadratic or even cubic with respect to the
number of data points. Moreover, the clustering results are sensitive to the input
parameters, which have to be tuned manually, and they detect reasonable clusters
only if all parameters are tuned appropriately.

Ideally, a clustering algorithm should be

• fast, applicable to massive data sets with a complexity that scales linearly with
its size;

• robust in the sense that its does not require too much parameter tuning in
order to produce meaningful results;

• adaptive, be able to detect non-convex clusters.

The contribution of this chapter is to present a spatial clustering algorithm,
called BOOL (Binary cOding Oriented cLustering), that meets all the above three
requirements. The efϐiciency and effectiveness of our BOOL algorithm are shown
experimentally (see Section 5.3). The key idea is to translate input data onto bi-
nary representations using binary discretization and use such binary codes to sortbinary discretization
and merge data points for high-speed large scale clustering. A hierarchy of clus-
ters is naturally produced by increasing the precision of the discretization. Each
hierarchy level is constructed in only two steps: discretization of each numerical
data point and agglomeration of adjacent smaller clusters.

The clustering procedure of BOOL is illustrated in Figure 5.1. We assume that
every data point is in a two-dimensional space [0, 1] × [0, 1]. First, data points

5.1 CLUSTERING STRATEGY 77

Original data Level 1 Level 2
1 2 1 2 1 2

𝑥ଵ 0.15 0.32 0 0 0 1
𝑥ଶ 0.66 0.71 1 1 2 2
𝑥ଷ 0.72 0.86 1 1 2 3
𝑥ସ 0.48 0.89 0 1 1 3
𝑥ହ 0.74 0.48 1 0 2 1

x1
x5

x2

x4 x3

0 1

0

1

0 1 2 3

0

1

2

3

Original data Discretization at level 1 Discretization at level 2

x1
x5

x2

x4 x3

x1
x5

x2

x4 x3

Figure 5.1 | Example of clustering us-
ing BOOL.

are discretized at level 1; i.e., each value 𝑥(𝑖) (𝑖 = 1 or 2) is discretized to 𝟶 if
0 ≤ 𝑥(𝑖) ≤ 0.5 and 𝟷 if 0.5 < 𝑥(𝑖) ≤ 1. For instance, two data points (0.15, 0.32)
and (0.48, 0.89) are discretized to (𝟶, 𝟶) and (𝟶, 𝟷), respectively. Next, clusters
using the following deϐinition are constructed; two data points are considered to
be in the same cluster if and only if the number of positions where two values differ
is at most one and the difference in the values is less than 𝑙 (the precise condition
is given in Deϐinition 5.2). Intuitively, if 𝑙 = 1, the two values lie in the same square
or the adjacent squares from the geometrical point of view. Thus, at this level, all
data are in the same cluster for all 𝑙 ≥ 1. Next, all data points are discretized at
level 2; each value 𝑥(𝑖) is discretized to 𝟶 if 0 ≤ 𝑥(𝑖) ≤ 0.25, 𝟷 if 0.25 < 𝑥(𝑖) ≤ 0.5,
𝟸 if 0.5 < 𝑥(𝑖) ≤ 0.75, and 𝟹 if 0.75 < 𝑥(𝑖) ≤ 1. If 𝑙 = 1, two clusters are found: a
data point 𝑥ଵ is in one cluster, and 𝑥ଶ, 𝑥ଷ, 𝑥ସ, and 𝑥ହ are in the other cluster.

Due to the naïve approach of this clustering process, the time complexity is
quadratic with respect to the number of data points (see Section 5.1) since each
point has to be compared to all the other ones. However, if the database is sorted
in advance, each data point simply needs to be compared with the subsequent one,
so clustering can be performed with linear complexity (see Section 5.2).

This chapter is organized as follows: Section 5.1 introduces the naïve version
of BOOL to clearly explain the clustering process and analyze the relationship be-
tween BOOL and DBSCAN (Ester et al., 1996), and Section 5.2 discusses the speed-
ing up by using sorting. The experimental results are presented and discussed
in Section 5.3. Related works are reviewed in Section 5.4, and the key points are
summarized in Section 5.5.

5.1 Clustering Strategy

In this section, we formulate the clustering problem and describe the naïve version
of our BOOL algorithm to enable the reader to get a clear understanding of the

78 CLUSTERING USING BINARY DISCRETIZATION

Algorithm 5.1: Naïve BOOL

Input: Database 𝜏 = (𝐻, 𝑋), lower bound on number of clusters 𝐾,
noise parameter𝑁, and distance parameter 𝑙

Output: Partition 𝒞
function NĆņěĊBĔĔđ(𝜏, 𝐾, 𝑁)
1: 𝑘 ← 1 // 𝑘 is level of discretization
2: repeat
3: 𝒞 ← { {𝑥} ∣ 𝑥 ∈ set(𝑋) }
4: for each object 𝑥 ∈ set(𝑋)
5: for each object 𝑦 ∈ set(𝑋)
6: if 𝑑଴(Δ௞(𝑥), Δ௞(𝑦)) ≤ 1 and 𝑑ஶ(Δ௞(𝑥), Δ௞(𝑦)) ≤ 𝑙 then
7: delete clusters 𝐶 ∋ 𝑥 and 𝐷 ∋ 𝑦 from 𝒞, and add 𝐶 ∪ 𝐷
8: end if
9: end for

10: end for
11: 𝒞 ← {𝐶 ∈ 𝒞 ∣ #𝐶 ≥ 𝑁 } // noise ϐiltering
12: 𝑘 ← 𝑘 + 1
13: until #𝒞 ≥ 𝐾
14: output 𝒞

clustering process. Note that results obtained with the naïve version and with the
speeded-up version are exactly the same — time complexity is the only difference
between them. The pseudo-code of naïve BOOL is shown in Algorithm 5.1.

5.1.1 Formulation of Databases and Clustering

We treat the target data set as a table, or a relation (Date, 2003; Garcia-Molina
et al., 2008; Simovici and Djeraba, 2008); 𝜏which is a pair (𝐻, 𝑋) of a header𝐻 and
a body 𝑋. A header 𝐻 is a ϐinite set of attributes, where each ℎ ∈ 𝐻 is referred to
as the domain of ℎ, denoted by Dom(ℎ). A body 𝑋 is a sequence of tuples, or data
points, 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ , where each tuple 𝑥௜ is deϐined as a total function from 𝐻 to
Dom(𝐻) = {Dom(ℎ) ∣ ℎ ∈ 𝐻} such that 𝑥௜(ℎ) ∈ Dom(ℎ) for all ℎ ∈ 𝐻. We denote
the number of tuples, the table size, 𝑛 by |𝜏|. When we treat the body 𝑋 as a set in
the set theoretic manner, we denote it by set(𝑋), that is, set(𝑋) = {𝑥ଵ, 𝑥ଶ, … , 𝑥௡}.
This means that we do not take the order and multiplicity into account in set(𝑋).

Throughout this chapter, the domain Dom(ℎ) of each attribute ℎ ∈ 𝐻 is con-
sidered to be the closed interval [0, 1] ⊂ ℝ. For our experiments using synthetic
and real data sets (Section 5.3), we ϐirst perform pre-processing (min-max nor-
malization) (Han and Kamber, 2006) so that each value for each attribute is in the
domain [0, 1]. We assume that the header 𝐻 is always the set of natural numbers
{1, 2, … , 𝑑}, so each tuple corresponds to a real vector in the 𝑑-dimensional Eu-
clidean space ℝௗ . We call a tuple an object and a relation a database.

Let 𝐽 be a subset of the header 𝐻. For each object 𝑥, the projection of 𝑥 on 𝐽,
denoted by 𝑥|௃ , is exactly the same as the restriction of 𝑥 to 𝐽, which is the function
from 𝐽 to Dom(𝐻) such that 𝑥|௃(ℎ) = 𝑥(ℎ) for all ℎ ∈ 𝐽. For a table 𝜏 = (𝐻, 𝑋),

5.1 CLUSTERING STRATEGY 79

𝜏
𝐻 1 2 3
𝑥ଵ 0.66 0.71 0.27
𝑥ଶ 0.72 0.86 0.46
𝑥ଷ 0.14 0.53 0.04

Δଵ(𝜏)
𝐻 1 2 3

Δଵ(𝑥ଵ) 1 1 0
Δଵ(𝑥ଶ) 1 1 0
Δଵ(𝑥ଷ) 0 1 0

Δଶ(𝜏)
𝐻 1 2 3

Δଶ(𝑥ଵ) 2 2 1
Δଶ(𝑥ଶ) 2 3 1
Δଶ(𝑥ଷ) 0 2 0

Table 5.1 | Database τ, and dis-
cretized databases ∆1(τ) and ∆2(τ).

the projection of 𝜏 is the database 𝜏|௃ = (𝐽, 𝑋|௃), where 𝑋|௃ is deϐined by 𝑋|௃ ∶=
𝑥ଵ|௃ , 𝑥ଶ|௃ , … , 𝑥௡|௃ .

Clustering is the partitioning of the set of objects set(𝑋) of a database 𝜏 into
𝐾 disjoint subsets 𝐶ଵ, 𝐶ଶ, … , 𝐶௄ , called clusters, such that 𝐶௜ ≠ ∅, 𝐶௜ ∩ 𝐶௝ = ∅
with 𝑖 ≠ 𝑗, and ⋃௜∈{ଵ,…,௄} 𝐶௜ = set(𝑋). Here, a database is treated as a sequence of
objects (tuples) to take ordering and multiplicity of objects into account just like
the relational database theory, while a cluster is a ϐinite set of objects in the set
theoretic manner and ordering and multiplicity is not considered. We say that a
set of clusters 𝒞 = {𝐶ଵ, … , 𝐶௄} with the above properties is a partition of set(𝑋).
The number of objects in 𝐶 is denoted by #𝐶.

5.1.2 Naïve BOOL

BOOL performs divisive hierarchical clustering, so the number of clusters increases
monotonically with the hierarchy level, and the union of some clusters becomes a
cluster at the previous lower level. At each level, BOOL determines the number
of clusters automatically. This ability is the major difference between BOOL and
other divisive hierarchical methods.

First, we introduce discretization of objects in a database based on binary en-
coding scheme. Recall that the domain of each attribute is assumed to be in the
interval [0, 1].

Deϐinition 5.1: Discretization
For an object 𝑥 in a database 𝜏, discretization at level discretization𝑘 is an operator Δ௞ for
𝑥, where each value 𝑥(𝑖) is mapped to a natural number 𝑚 such that 𝑥(𝑖) = 0
implies 𝑚 = 𝟶, and 𝑥(𝑖) ≠ 0 implies

𝑚 =
⎧⎪
⎨⎪⎩

𝟶 if 0 < 𝑥(𝑖) ≤ 2ି௞ ,
𝟷 if 2ି௞ାଵ < 𝑥(𝑖) ≤ 2ି௞ାଶ,
...
2௞ − 1 if 2ି௞ା(௞ିଵ) < 𝑥(𝑖) ≤ 1.

We use the same operator Δ௞ for discretization of a database 𝜏; i.e., each object 𝑥
of 𝜏 is discretized to Δ௞(𝑥) in the database Δ௞(𝜏) = (𝐻, Δ௞(𝑋)). Table 5.1 shows
an example of discretization at levels 1 and 2. In the following, we ϐix the level of
discretization as 𝑘 and explain the construction of clusters at level 𝑘.

Next, we make clusters through discretization Δ௞ by measuring the distances
between objects using the 𝐿଴ and 𝐿ஶ metrics, where the distance between a pair

80 CLUSTERING USING BINARY DISCRETIZATION

of objects 𝑥 and 𝑦 is deϐined by

𝑑଴(𝑥, 𝑦) =
ௗ

෍
௜ୀଵ

𝛿(𝑥(𝑖), 𝑦(𝑖)), where 𝛿 = ൝ 0 if 𝑥(𝑖) = 𝑦(𝑖),
1 if 𝑥(𝑖) ≠ 𝑦(𝑖),

𝑑ஶ(𝑥, 𝑦) = max
௜∈{ଵ,…,ௗ}

|𝑥(𝑖) − 𝑦(𝑖)|

in the 𝐿଴ and 𝐿ஶ metrics, respectively. Here, for an object𝑥 in a database 𝜏 = (𝐻, 𝑋)
and a natural number 𝑙 ∈ ℕ, we deϐine 𝑥’s 𝑙-neighborhood at level 𝑘 by𝑙-neighborhood at level𝑘

𝑁௞
௟ (𝑥) ≔ ቄ 𝑦 ∈ set(𝑋) ቚ 𝑑଴(Δ௞(𝑥), Δ௞(𝑦)) ≤ 1 and 𝑑ஶ(Δ௞(𝑥), Δ௞(𝑦)) ≤ 𝑙 ቅ .

(5.1)

We call 𝑙 the distance parameter. This condition means that the number of at-distance parameter
tributes for which two values differ is at most one and that the difference in the
values is less than 𝑙 (see Figure 5.2). Note that, if 𝑙 = 1,

𝑁௞
ଵ(𝑥) = {𝑦 ∈ set(𝑋) ∣ 𝑑ଵ(Δ௞(𝑥), Δ௞(𝑦)) ≤ 1}

holds, where 𝑑ଵ is the Manhattan distance (𝐿ଵ metric).

Deϐinition 5.2: Reachability
Given a distance parameter 𝑙 ∈ ℕ and a database 𝜏 = (𝐻, 𝑋). An object 𝑥 ∈
set(𝑋) is directly reachable at level 𝑘

directly reachable at level𝑘
from an object 𝑦 ∈ set(𝑋) if 𝑥 ∈ 𝑁௞

௟ (𝑦).
Moreover, 𝑥 is reachable at level 𝑘

reachable at level𝑘
from an object 𝑧 ∈ set(𝑋) if there exists a

chain of objects 𝑧ଵ, 𝑧ଶ, … , 𝑧௣ (𝑝 ≥ 2) in 𝜏 such that 𝑧ଵ = 𝑧, 𝑧௣ = 𝑥, and 𝑧௜ାଵ is
directly reachable at level 𝑘 from 𝑧௜ for every 𝑖 ∈ {1, 2, … , 𝑝 − 1}.

Trivially, this notion of reachability is symmetric; that is, if an object 𝑥 is reachable
at level𝑘 from𝑦, then𝑦 is reachable from𝑥. Consequently, a partition of a database
at discretization level 𝑘 is naturally produced.

Deϐinition 5.3: Level-k partition
A partition of a database 𝜏 = (𝐻, 𝑋) is a level-𝑘 partition

level-𝑘 partition
, denoted by 𝒞௞ , if it

satisϐies the following condition: For all pairs of objects 𝑥, 𝑦 ∈ set(𝑋), the pair
is in the same cluster if and only if 𝑦 is reachable at level 𝑘 from 𝑥.

The level-𝑘 partition is determined uniquely. Intuitively, if we see each discretized
object as a cluster, then adjacent clusters are agglomerated when 𝑙 = 1. It takes
𝑂(𝑛ଶ𝑑) time to construct the level-𝑘 partition with the naïve version shown in Al-
gorithm 5.1, where 𝑛 is the number of objects and 𝑑 is the number of attributes,
since we have to calculate distances 𝑑଴ and 𝑑ஶ for all pairs of objects. In the next
section, we discuss speeding up of this process by sorting the database.
Example 5.4
Consider the database 𝜏 given in Table 5.1. Fix 𝑙 = 1. Then, level-1 partition 𝒞ଵ =
{{𝑥ଵ, 𝑥ଶ, 𝑥ଷ}} since

𝑑଴(Δଵ(𝑥ଵ), Δଵ(𝑥ଶ)) = 0 and 𝑑ஶ(Δଵ(𝑥ଵ), Δଵ(𝑥ଶ)) = 0,
𝑑଴(Δଵ(𝑥ଵ), Δଵ(𝑥ଷ)) = 1 and 𝑑ஶ(Δଵ(𝑥ଵ), Δଵ(𝑥ଷ)) = 1,
𝑑଴(Δଵ(𝑥ଶ), Δଵ(𝑥ଷ)) = 1 and 𝑑ஶ(Δଵ(𝑥ଶ), Δଵ(𝑥ଷ)) = 1,

5.1 CLUSTERING STRATEGY 81

𝑙 = 1

l = 2

𝑙 = 3

𝑥

𝑥

𝑥

Figure 5.2 | Illustration of l-
neighborhood. For each distance
parameter l and an object x, if an
object y is in a dotted square, y ∈
Nkl (x) defined in the equation (5.1).

hence 𝑁ଵ
ଵ(𝑥ଵ) = {𝑥ଶ, 𝑥ଷ}, 𝑁ଵ

ଵ(𝑥ଶ) = {𝑥ଵ, 𝑥ଷ}, and 𝑁ଵ
ଵ(𝑥ଷ) = {𝑥ଵ, 𝑥ଶ}; 𝑥ଶ and 𝑥ଷ are

reachable at level 1 from 𝑥ଵ. Level-2 partition 𝒞ଶ = {{𝑥ଵ, 𝑥ଶ}, {𝑥ଷ}} since

𝑑଴(Δଶ(𝑥ଵ), Δଶ(𝑥ଶ)) = 1 and 𝑑ஶ(Δଶ(𝑥ଵ), Δଶ(𝑥ଶ)) = 1,
𝑑଴(Δଶ(𝑥ଵ), Δଶ(𝑥ଷ)) = 2 and 𝑑ஶ(Δଶ(𝑥ଵ), Δଶ(𝑥ଷ)) = 2,
𝑑଴(Δଶ(𝑥ଶ), Δଶ(𝑥ଷ)) = 3 and 𝑑ஶ(Δଶ(𝑥ଶ), Δଶ(𝑥ଷ)) = 2,

hence𝑁ଶ
ଵ(𝑥ଵ) = {𝑥ଶ},𝑁ଶ

ଵ(𝑥ଶ) = {𝑥ଵ}, and𝑁ଶ
ଵ(𝑥ଷ) = ∅; 𝑥ଵ and 𝑥ଶ are not reachable

from 𝑥ଷ, and 𝑥ଶ is reachable from 𝑥ଵ.
Level-𝑘 partitions have a hierarchical structure, that is, for the level-𝑘 and 𝑘 +

1 partitions 𝒞௞ and 𝒞௞ାଵ, the following condition holds: For every cluster 𝐶 ∈
𝒞௞ , there exists a set of clusters 𝒟 ⊆ 𝒞௞ାଵ such that ⋃𝒟 = 𝐶. This is why, for
two objects 𝑥 and 𝑦, if 𝑦 is directly reachable at level 𝑘 from 𝑥, then 𝑦 is directly
reachable at level 𝑘ᇱ from 𝑥 for all 𝑘ᇱ ≤ 𝑘. BOOL uses this property; it increases
discretization level𝑘 to make more than𝐾 clusters, where𝐾 is the input parameter
denoting the lower bound on the number of clusters.

Furthermore, by using the lower bound on cluster size𝑁, noise ϐiltering can be
done easily and directly.

Deϐinition 5.5: Noise
Given a natural number 𝑁 ∈ ℕ. Let 𝒞௞ be the level-𝑘 partition of a database
𝜏 = (𝐻, 𝑋). For each cluster 𝐶 ∈ 𝒞௞ , every object in 𝐶 is noise noiseif #𝐶 < 𝑁.

We call𝑁 the noise parameter. For example, for the level-2 partition𝒞ଶ in Example noise parameter
5.4, the cluster {𝑥ଷ} is detected as noise if𝑁 = 2.

5.1.3 Relationship between BOOL and DBSCAN

The BOOL approach can be viewed as a mix of hierarchical clustering with density-
based clustering. BOOL uses only 𝐿଴ and 𝐿ஶ metrics to deϐine reachability and this
restriction allows for sorting to be leveraged for clustering shown in the next sec-
tion. Here we theoretically discuss the relationship between BOOL and DBSCAN
(Ester et al., 1996), which is a typical density-based clustering algorithm, with re-
spect to the reachability.

First, we prepare the notion of density-reachability in DBSCAN referring the
literature (Ester et al., 1996). For an object 𝑥, the Eps-neighborhood of 𝑥 is Eps-neighborhood

82 CLUSTERING USING BINARY DISCRETIZATION

𝑁୉୮ୱ(𝑥) = {𝑦 ∈ set(𝑋) ∣ 𝔡(𝑥, 𝑦) ≤ Eps}, (5.2)

where 𝔡 is an arbitrary distance function such as Euclidean distance. Then, an
object 𝑥 is directly density-reachable from 𝑦 with respect to Eps and MinPts ifdirectly density-reachable

𝑞 ∈ 𝑁୉୮ୱ(𝑥) and #𝑁୉୮ୱ(௬) ≥ MinPts,

and an object𝑥 isdensity-reachable from 𝑧with respect toEpsandMinPts if there isdensity-reachable
a chain of objects 𝑧ଵ, 𝑧ଶ, … , 𝑧௣ such that 𝑧ଵ = 𝑧, 𝑧௣ = 𝑥, and 𝑧௜ାଵ is directly density-
reachable from 𝑧௜ . Here, in DBSCAN, each cluster is deϐined to be a set of density-
connected points which is maximal with respect to density-reachability, where an
object 𝑥 is density-connected to an object 𝑦 with respect to Eps andMinPts if theredensity-connected
is an object 𝑜 such that both 𝑥 and 𝑦 are density-reachable from 𝑜 with respect to
Eps and MinPts.

Compared to our approach, we can easily show the following relationship be-
tween BOOL and DBSCAN since, ifMinPts = 1, the property of density-connectivity
is exactly the same as density-reachability.

Theorem 5.6
Given a database 𝜏 = (𝐻, 𝑋). Assume that the distance parameter 𝑙 = 1. The
level-𝑘 partition 𝒞௞ of 𝜏 is exactly the same as the output of DBSCAN for the dis-
cretized input database Δ௞(𝜏) if the distance 𝔡 in the equation (5.2) is the Man-
hattan distance 𝑑ଵ and parameters are set as Eps = 𝑙 andMinPts = 1.

For 𝑙 > 1, if we modify the deϐinition of the Eps-neighborhood by

𝑁୉୮ୱ(𝑥) = {𝑦 ∈ set(𝑋) ∣ 𝑑଴(𝑥, 𝑦) ≤ 1 and 𝑑ஶ(𝑥, 𝑦) ≤ Eps},

we have the same result. In contrast, the deϐinition of noise is different. Noise in
DBSCAN is deϐined using MinPts as low density area, whereas BOOL does not use
any density; no object is noise in BOOL ifMinPts = 1.

The time complexity of DBSCAN is𝑂(𝑛ଶ𝑑), thus it is difϐicult to apply it for mas-
sive data in data mining and knowledge discovery. It is known that the complexity
can be reduced to 𝑂(𝑛𝑑 log 𝑛) using 𝑘-𝑑 tree for data indexing, but practically DB-
SCAN is still computationally expensive (Han and Kamber, 2006). In the next sec-
tion, we show that linear complexity with respect to the number of objects can be
realized in BOOL by sorting binary representations of original data, which results
in speedups when compared with DBSCAN and other algorithms.

Moreover, DBSCAN is quite sensitive to the parameter settings as described
by Han and Kamber (2006). The hierarchical clustering of BOOL using the input
parameter 𝑙 of a natural number realizes robust clustering, and manual parameter
setting in BOOL is quite easy.

5.2 Speeding Up of Clustering through Sorting

In this section, we discuss speeding up of the naïve version of BOOL by sorting the
objects, resulting in linear time complexity. The pseudo-code of speeded-up BOOL
is shown in Algorithm 5.2.

First, we introduce a sorting operator. We sort a given database 𝜏 by using
values in the discretized database Δ௞(𝜏).

5.2 SPEEDING UP OF CLUSTERING THROUGH SORTING 83

Algorithm 5.2: Speeded-up BOOL

Input: Database 𝜏 = (𝐻, 𝑋), lower bound on number of clusters 𝐾,
noise parameter𝑁, and distance parameter 𝑙

Output: Partition 𝒞
function BĔĔđ(𝜏, 𝐾, 𝑁)
1: 𝑘 ← 1 // 𝑘 is discretization level
2: repeat
3: 𝒞 ← MĆĐĊHĎĊėĆėĈčĞ(𝜏, 𝑘, 𝑁)
4: 𝑘 ← 𝑘 + 1
5: until #𝒞 ≥ 𝐾
6: output 𝒞

function MĆĐĊHĎĊėĆėĈčĞ(𝜏, 𝑘, 𝑁)
1: 𝒞 ← { {𝑥} ∣ 𝑥 ∈ set(𝑋) }
2: 𝑋ୈ ← Δ௞(𝑋) // discretize 𝑋 at level 𝑘
3: 𝑋 ← 𝑆ఙభ ∘ 𝑆ఙమ ∘ … ∘ 𝑆ఙ೏(𝑋), where 𝜎௜ = 𝑋ୈ|௜
4: ℎ ← 𝑑
5: repeat
6: 𝑋 ← 𝑆ఙ(𝑋) such that 𝜎 = 𝑋ୈ|௛
7: 𝒞 ← AČČđ(𝜏, 𝒞, ℎ)
8: ℎ ← ℎ − 1
9: until ℎ = 0

10: 𝒞 ← {𝐶 ∈ 𝒞 ∣ #𝐶 ≥ 𝑁}
11: output 𝒞
function AČČđ(𝜏, 𝒞, ℎ)
1: for each object 𝑥 ∈ set(𝑋)
2: 𝑦 ← successive object of 𝑥
3: if 𝑦 is directly reachable from 𝑥 (i.e., 𝑦 ∈ 𝑁௟(𝑥)) then
4: delete clusters 𝐶 ∋ 𝑥 and 𝐷 ∋ 𝑦 from 𝒞, and add 𝐶 ∪ 𝐷
5: end if
6: end for
7: output 𝒞

Deϐinition 5.7: Sorting
Let 𝜏 = (𝐻, 𝑋) be a database and 𝜎 be a sequence of natural numbers such that
the size of𝜎 is same as that of𝑋. The expression𝑆ఙ(𝜏) is the database 𝜏 for which
objects are sorted in the order indicated by𝜎, where ties keep the original order.

Obviously, this operation 𝑆 can be realized by using a standard sorting algorithm
such as quick sort. Here we only consider sorting of database 𝜏 by using a column
in the discretized database Δ௞(𝜏), so we can use bucket sort since the domain of bucket sort
each attribute of Δ௞(𝜏) is from 𝟶 to 2௞ − 1, and this size can reasonably ϐit in the
bucket of the main memory for most real databases (𝑘 is usually less than 10 in
practice). The operation of 𝑆 should therefore take only 𝑂(𝑛) time, where 𝑛 is the
number of objects.

84 CLUSTERING USING BINARY DISCRETIZATION

Table 5.2 | Database τ = ({1,2,3}, X)
and sorted database Sσ(τ), where σ=
∆2(X)|2.

𝜏
𝐻 1 2 3
𝑥ଵ 0.66 0.71 0.27
𝑥ଶ 0.72 0.86 0.46
𝑥ଷ 0.14 0.53 0.04

𝜎

2
3
2

𝑆ఙ(𝜏)
𝐻 1 2 3
𝑥ଵ 0.66 0.71 0.27
𝑥ଷ 0.14 0.53 0.04
𝑥ଶ 0.72 0.86 0.46

Example 5.8
Consider database 𝜏 given in Table 5.2 (same as in Table 5.1). and let 𝜎 be the
sequence Δଶ(𝑋)|ଶ; i.e., the column of the discretized database Δଶ(𝜏) = ({1, 2, 3},
Δଶ(𝑋)) for attribute 2. Then, 𝑆ఙ(𝜏) becomes the database in Table 5.2.

Next we describe the main theorem used for speeding up BOOL. It states clus-
tering can be completed by comparing each object to the next object 𝑑 times with
sorting.

Theorem 5.9
For any database 𝜏 and any natural number 𝑘, the output of the function MĆĐĊ-
HĎĊėĆėĈčĞ(𝜏, 𝑘, 0) in Algorithm 5.2 is the level-𝑘 partition 𝒞௞ .

Proof. Suppose that 𝒞 is the output of the function MĆĐĊHĎĊėĆėĈčĞ. From the
function AČČđ, it is trivial that, for all pairs of objects 𝑥 and 𝑦 of 𝜏 such that they
are in the same cluster in 𝒞, the same holds in 𝒞௞ . Thus, it is enough to prove that,
for all pairs of objects 𝑥 and 𝑦, if 𝑦 is directly reachable from 𝑥, they are in the same
cluster in 𝒞.

Fix two objects 𝑥 and 𝑦 such that 𝑦 is directly reachable from 𝑥. We can assume
that there is no object 𝑧 such that 𝑑଴(Δ௞(𝑧), Δ௞(𝑥)) = 0 or 𝑑଴(Δ௞(𝑧), Δ௞(𝑦)) = 0
(i.e., 𝑧 = 𝑥 or 𝑧 = 𝑦) without loss of generality. Then there must exist ℎ ∈ 𝐻 =
{1, 2, … , 𝑑} such that |𝑥(ℎ) − 𝑦(ℎ)| ≤ 𝑙 and |𝑥(𝑖) − 𝑦(𝑖)| = 0 for all 𝑖 ∈ 𝐻 with
𝑖 ≠ ℎ. By sorting 𝑆ఙ(𝑋) using 𝜎 = Δ௞(𝑋)|௛ (line 6 of the function), it is easy to see
that 𝑦 becomes the successive object of 𝑥 since other attributes have already been
sorted, so they are in the same cluster. Thus 𝒞 is exactly the same as 𝒞௞ .

We can easily check that the time complexity of the function MĆĐĊHĎĊėĆėĈčĞ
of Algorithm 5.2 is 𝑂(𝑛𝑑) in the best case and 𝑂(𝑛𝑑ଶ) in the worst case, since
checking the condition with the distances𝑑଴ and𝑑ஶ (line 3 of function AČČđ) takes
𝑂(1) time in the best case and 𝑂(𝑑) time in the worst case. Thus, the time com-
plexity of BOOL is 𝑂(𝑛𝑑𝑘) or 𝑂(𝑛𝑑ଶ𝑘), where #𝒞௞ିଵ < 𝐾 and #𝒞௞ ≥ 𝐾, and it is
usually 𝑂(𝑛𝑑) or 𝑂(𝑛𝑑ଶ) since 𝑘 ≪ 𝑛 holds. Most real databases used in spatial
clustering have only two or three attributes, so BOOL is fast although the complex-
ity is quadratic with respect to the number of attributes in the worst case (actual
running time is shown in next section).
Example 5.10
We explain the clustering process of the function MĆĐĊHĎĊėĆėĈčĞ in BOOL using
an example shown in Figure 5.3. We consider the level-2 partition of a database 𝜏
(Figure 5.3, (a)) with the number of attributes 𝑑 = 2, and assume that the distance
parameter 𝑙 = 1.

First, the database 𝜏 (Figure 5.3, (a)) is discretized toΔଶ(𝜏) in line 2 in the func-
tion (Figure 5.3, (b)). Next, it is sorted two times by bucket sort for each attribute

5.2 SPEEDING UP OF CLUSTERING THROUGH SORTING 85

(a) Original database 𝜏

𝐻 1 2
𝑥ଵ 0.36 0.11
𝑥ଶ 0.48 0.29
𝑥ଷ 0.42 0.61
𝑥ସ 0.19 0.21
𝑥ହ 0.72 0.88
𝑥଺ 0.92 0.63
𝑥଻ 0.40 0.51
𝑥଼ 0.97 0.03
𝑥ଽ 0.36 0.87
𝑥ଵ଴ 0.77 0.81

⟶

(b) Discretized
database Δଶ(𝜏)

𝐻 1 2
𝑥ଵ 1 0
𝑥ଶ 1 1
𝑥ଷ 1 2
𝑥ସ 0 0
𝑥ହ 2 3
𝑥଺ 3 2
𝑥଻ 1 2
𝑥଼ 3 0
𝑥ଽ 1 3
𝑥ଵ଴ 3 3

⟶

(c) Sort by
attribute 2

𝐻 1 2
𝑥ଵ 1 0
𝑥ସ 0 0
𝑥଼ 3 0
𝑥ଶ 1 1
𝑥ଷ 1 2
𝑥଺ 3 2
𝑥଻ 1 2
𝑥ହ 2 3
𝑥ଽ 1 3
𝑥ଵ଴ 3 3

⟶

(d) Sort by
attribute 1

𝐻 1 2
𝑥ସ 0 0
𝑥ଵ 1 0
𝑥ଶ 1 1
𝑥ଷ 1 2
𝑥଻ 1 2
𝑥ଽ 1 3
𝑥ହ 2 3
𝑥଼ 3 0
𝑥଺ 3 2
𝑥ଵ଴ 3 3

⟶

⟶

(e) Sort by attribute 2 and compare each
object to the subsequent object

𝐻 1 2 Class
𝑥ସ 0 0 A
𝑥ଵ 1 0 A
𝑥଼ 3 0 B
𝑥ଶ 1 1 C
𝑥ଷ 1 2 D
𝑥଻ 1 2 D
𝑥଺ 3 2 E
𝑥ଽ 1 3 F
𝑥ହ 2 3 F
𝑥ଵ଴ 3 3 F

0 1 2 3

0

1

2

3

⟶

⟶

(f) Sort by attribute 1 and compare each
object to the subsequent object

𝐻 1 2 Class
𝑥ସ 0 0 A
𝑥ଵ 1 0 A
𝑥ଶ 1 1 A
𝑥ଷ 1 2 A
𝑥଻ 1 2 A
𝑥ଽ 1 3 A
𝑥ହ 2 3 A
𝑥଼ 3 0 B
𝑥଺ 3 2 A
𝑥ଵ଴ 3 3 A

0 1 2 3

0

1

2

3

Figure 5.3 | Illustrative example of clustering process by speeded-up BOOL.

86 CLUSTERING USING BINARY DISCRETIZATION

in line 3 (Figure 5.3, (c) and (d)). This sorting is exactly the same as radix sort
radix sort

if
we see each discretized object Δଶ(𝑥) = 𝑚 as the integer 10𝑚(1)+𝑚(2). Then, the
discretized database is sorted again together with merging clusters in lines 5–9
(Figure 5.3, (e) and (f)). For each attribute ℎ, BOOL sorts the database by bucket
sort in advance, and compare each object to the subsequent object. If one object is
directly reachable from the other object, BOOL categorizes these objects into the
same cluster (i.e., gives the same class label). By repeating this clustering process
for each attribute, every pair of objects are in the same cluster if and only if one is
reachable from the other. In this example, by sorting with attribute 2, six clusters
A, B, C, D, E, and F are found (Figure 5.3, (e)) and, by sorting with attribute 1, ϐive
clusters A, C, D, E, and F are merged into one cluster (Figure 5.3, (f)).

5.3 Experiments

We evaluate BOOL experimentally to determine its scalability and effectiveness for
various types of databases including: synthetic databases with two attributes, real
databases with three attributes generated from natural images, large real data-
bases with two attributes generated from geospatial images, and real databases
with various sizes of attributes from the UCI repository.

5.3.1 Methods

Environment

We used Mac OS X version 10.6.5 with two 2.26-GHz Quad-Core Intel Xeon CPUs
and 12 GB of memory. BOOL was implemented in C and compiled with gcc 4.2.1.
All experiments were performed in the R environment, version 2.12.2 (R Develop-
ment Core Team, 2011).

Databases

Synthetic and real databases were used. To evaluate scalability with respect to
the size of the databases and the number of clusters, synthetic databases were
generated randomly using the R clusterGeneration package (Qiu and Joe, 2006),
with parameter sepVal set to 0.34. Each database had two attributes (𝑑 = 2), and
the number of objects (𝑛) and clusters (𝐾) varied from 100 to 1,000,000 and from
5 to 40, respectively. We used databases with𝑛 =10,000 and𝐾 = 5 to evaluate the
robustness of BOOL. Each database contained 𝑛/100 outliers (noise points). The
databases were generated 20 times, and the mean and s.d. (standard deviation)
were calculated. Four synthetic databases (DS1, DS2, DS3, and DS4) were taken
from the CLUTO website¹; they had been used as benchmarks in the evaluations
of other spatial clustering algorithms such as CHAMELEON (Karypis et al., 1999),
SPARCL (Chaoji et al., 2009), and ABACUS (Chaoji et al., 2011).

The real databases consisted of four natural images, four large satellite images,
and six databases from the UCI machine learning repository (Frank and Asun-
cion, 2010). The natural images (shown in Figure 5.7, (a), (d), (g), and (j)) were

¹http://glaros.dtc.umn.edu/gkhome/views/cluto/

http://glaros.dtc.umn.edu/gkhome/views/cluto/

5.3 EXPERIMENTS 87

103 104 105 106
Number of objects n

102

Ru
nn

in
g

tim
e

(s
)

10-4

10-2

1

104

102

103 104 105 106
Number of objects n

102

Ad
ju

st
ed

 R
an

d
in

de
x

0.9

0.92

0.96

1.00

0.98

0.94

3510 20 30 40
Number of clusters K

25155

Ru
nn

in
g

tim
e

(s
)

10-3

10-2

10-1

10

1

3510 20 30 40
Number of clusters K

25155

Ad
ju

st
ed

 R
an

d
in

de
x

0.4

0.5

0.7

1.0

0.9

0.6

0.8

(a) (b)

(c) (d)

BOOL
K-means
DBSCAN

Figure 5.4 | Clustering speed and
quality for randomly generated syn-
thetic databases, where K = 5 for (a)
and (c) and n=10,000 for (b) and (d).
Adjusted Rand index should be maxi-
mized. Data showmean ± s.d.

taken from the website of the Berkeley segmentation database and benchmark²
(Martin et al., 2001); they were the same ones used as benchmarks in a previ-
ous study by Chaoji et al. (2011). Each image was 481 × 321 in size, and 154,401
pixels in total, and the RGB (red-green-blue) values for each pixel were obtained
by pre-precessing. Finally, each image was translated into a database with 3 at-
tributes and 154,401 objects. Four another real databases were collected from the
Earth-as-Art website³, which contains geospatial satellite images. Similar data-
bases were used in the literature (Chaoji et al., 2011). Each image was originally
composed of 7, 296×7, 296 pixels (Figures 5.8 (a), (e), (i), and (m)) and was trans-
lated into the binary image using ImageJ software (Rasband, 1997–2011) (Fig-
ures 5.8 (b), (f), (j), and (n)). The six UCI databases (ecoli, sonar, shuttle, wdbc,
wine, and wine quality) were used to test the effectiveness of BOOL for databases
with various attribute sizes.

Every database was translated using min-max normalization (Han and Kam-
ber, 2006) in advance so that each value was in the unit interval [0, 1], The runtime
for this translation was included in the BOOL running time.

Control Algorithms

We used 𝐾-means and DBSCAN as control algorithms. 𝐾-means is a commonly
used and efϐicient clustering algorithm, and DBSCAN is a well-known and typi-
cal spatial clustering algorithm. DBSCAN was executed using the R fpc package.
For databases DS1 - DS4 and the natural image databases, we also compared the
running time of BOOL with those of state-of-the-art clustering algorithms ABACUS
(Chaoji et al., 2011) and SPARCL (Chaoji et al., 2009). Their source codes are not
publicly available, so we simply used the reported results (Chaoji et al., 2011) to
avoid implementation biases. The four synthetic databases and four natural im-

²http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
³http://eros.usgs.gov/imagegallery/

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://eros.usgs.gov/imagegallery/

88 CLUSTERING USING BINARY DISCRETIZATION

Figure 5.5 | Clustering speed and
quality for various values of distance
parameter l and noise parameter N.
Adjusted Rand index should be max-
imized. Data showmean ± s.d.

10

0.020

0.015

0.010

0.005

0
2 4 6 8
Distance parameter l

Ru
nn

in
g

tim
e

(s
)

10

1.00

0.98

0.94

0.92

0.90
2 4 6 8
Distance parameter l

A
dj

us
te

d
Ra

nd
 in

de
x

0.96

10

0.020

0.015

0.010

0.005

0
2 4 6 8

Noise parameter N

Ru
nn

in
g

tim
e

(s
)

0

10

1.2

0.8
1.0

0.6
0.4
0.2

0
-0.2

2 4 6 8
Noise parameter N

A
dj

us
te

d
Ra

nd
 in

de
x

0

(a) (b)

(c) (d)

ages are identical to those used in a previous evaluation (Chaoji et al., 2011), so
the comparison here is reasonable.

Evaluation

Clustering quality was evaluated using the adjusted Rand index (takes values in
[−1, 1], to be maximized) (Hubert and Arabie, 1985), which takes into account the
ground truth and is popular in the clustering literature. For the synthetic data-
bases DS1 - DS4, natural images, and satellite images, we simply show scatter
and contour plots of the results since we had no information on the ground truth.
Moreover, the number of clusters was not clear for the natural images, so we used
the MAKEHIERARCHY function in Algorithm 5.2 to obtain clusters at some hierarchy
level. For 𝐾-means, we used the reported number of clusters (Chaoji et al., 2011).
All parameters for BOOL and DBSCAN were tuned to obtain the best results.

5.3.2 Results and Discussion

As discussed below, our proposed algorithm, BOOL, shows the best performance
in terms of both clustering speed and quality. The results indicate that BOOL is
efϐicient and effective for spatial clustering.

The clustering speed and quality results for randomly generated synthetic data-
bases are plotted in Figure 5.4. For BOOL, the distance and noise parameters, 𝑙 and
𝑁, were set to 1 and 𝑛/100, respectively. In most cases, BOOL shows the best per-
formance. BOOL is faster than 𝐾-means and from two to six orders of magnitude
faster than DBSCAN. Moreover, the quality of the obtained clusters is higher than
those for 𝐾-means and DBSCAN in terms of the adjusted Rand index. The cluster-
ing speed and quality of BOOL for various values of𝑁 and 𝑙 are plotted in Figure 5.5,
where𝑁 was ϐixed to 100 for Figures 5.5, (a) and (c), and 𝑙 to 1 for Figures 5.5, (b)
and (d). Every database contains noise points, and BOOL treats each one as a clus-
ter if𝑁 is small (𝑁 = 0, 1, 2, and 3). This is why the adjusted Rand index is low for

5.3 EXPERIMENTS 89

Name 𝑛 𝑑 𝐾 BL KM DB AB SP
DS1 8000 2 6 0.004 0.008 9.959 1.7 1.8
DS2 8000 2 6 0.004 0.008 10.041 1.3 1.5
DS3 10000 2 9 0.010 0.036 15.832 1.9 2.5
DS4 8000 2 8 0.005 0.018 9.947 1.7 1.8
Horse 154401 3 – 0.253 0.674 – 31.2 41.8
Mushroom 154401 3 – 0.761 1.449 – 29.3 –
Pyramid 154401 3 – 0.187 0.254 – 11.3 –
Road 154401 3 – 0.180 0.209 – 14.9 –
Delta 27543260 2 6 34.398 273.231 – – –
Europe 23071720 2 6 27.607 44.985 – – –
Norway 33879834 2 4 23.866 46.302 – – –
Ganges 24546151 2 8 32.977 58.273 – – –

Table 5.3 | Running time (in sec-
onds) for synthetic databases, real
databases from natural images, and
real databases from geospatial satel-
lite images with BOOL (BL), K-means
(KM), DBSCAN (DB), ABACUS (AB), and
SPARCL (SP). In table, n, d, and K de-
note number of objects, attributes,
and clusters, respectively. Results for
ABACUS and SPARCL are taken from
the literature (Chaoji et al., 2011).
Clustering results are shown in Fig-
ures 5.6, 5.7, and 5.8.

small 𝑁. These results show that BOOL is robust with respect to 𝑁 and 𝑙 and, for
lots of databases, all we have to do is set 𝑙 as 1 and 𝑁 large enough (𝑁 ≥ 4).

The results for the synthetic databases DS1–DS4 are summarized in Table 5.3
and illustrated in Figure 5.6. For all databases, BOOL is the fastest and about three
orders of magnitude faster than the two state-of-the-art clustering algorithms, ABA-
CUS and SPARCL, when (𝑙, 𝑁) = (1, 100), (1, 100), (7, 100), and (11, 40) for DS1,
DS2, DS3, and DS4, respectively. BOOL ϐinds all reasonable clusters in DS1 and
DS2. It also effectively ϐilters out the noise, as shown in Figure 5.6, whereas 𝐾-
means does not. Note that ABACUS and SPARCL cannot detect noise effectively,
as shown in previous studies (Chaoji et al., 2009, 2011). BOOL does not ϐind some
clusters in DS3 and DS4, which is counterintuitive. The reason is that such clusters
are connected by dense noise, so BOOL cannot divide them into smaller clusters.
However, the results are still much better than those with𝐾-means. These results
indicate that BOOL is the fastest spatial clustering algorithm that can ϐind arbitrar-
ily shaped clusters for use in typical spatial clustering tasks.

For the real databases obtained from the natural images, BOOL again shows the
best performance; i.e., it is the fastest of the compared clustering algorithms (Ta-
ble 5.3) for (𝑘, 𝑙, 𝑁) = (7, 1, 50), (7, 15, 20), (8, 5, 100), and (10, 15, 400) for Horse,
Mushroom, Pyramid, and Road, respectively (𝑘 is the hierarchy level). BOOL is
faster than 𝐾-means, and about two orders of magnitude faster than ABACUS and
SPARCL (we did not perform DBSCAN since it takes too much time and needs man-
ual tuning of the input parameters). Moreover, the quality of the clustering is much
better than that with 𝐾-means, as shown in Figure 5.7. These results show that
BOOL is efϐicient and effective for spatial clustering for natural images. Further-
more, they show that BOOL works well for hierarchical clustering, meaning that
we can input the hierarchy level directly rather than entering the lower bound on
the number of clusters.

For all the real databases from geospatial satellite images, BOOL is faster than
𝐾-means and ϐinds natural clusters (parameters 𝑙 and𝑁were set as 1 and 100000,
respectively, for all the databases), as shown in Figures 5.8, (c), (g), (k), and (o),
whereas 𝐾-means results in inferior clustering quality (Figures 5.8, (d), (h), (l),
and (p)). These results show that BOOL has high scalability and that it can ϐind
arbitrarily shaped clusters without careful tuning of the input parameters.

90 CLUSTERING USING BINARY DISCRETIZATION

Table 5.4 | Results for UCI databases
with BOOL (BL), K-means (KM) and
DBSCAN (DB). In table, n, d, and K
denote the number of objects, at-
tributes, and clusters, respectively.
For all databases, BOOL showed the
equal or better performance com-
pared to K-means and DBSCAN.

Name 𝑛 𝑑 𝐾 Running time Adjusted Rand index
BL KM DB BL KM DB

ecoli 336 7 8 0.001 0.002 0.111 0.5745 0.4399 0.1223
sonar 208 60 2 0.004 0.005 0.149 0.0133 0.0064 0.0006
shuttle 14500 9 7 0.025 0.065 – 0.7651 0.1432 –
wdbc 569 30 2 0.004 0.004 0.222 0.6806 0.4914 0.5530
wine 178 13 3 0.002 0.002 0.047 0.4638 0.3347 0.2971
wine q. 4898 11 7 0.019 0.026 7.601 0.0151 0.0099 0.0134

Finally, for the UCI databases, BOOL again shows the best performance com-
pared to𝐾-means and DBSCAN (Table 5.4), showing that BOOL works well not only
for low-dimensional databases but also for high-dimensional databases. These re-
sults show that BOOL should work efϐiciently and effectively for various types of
databases including small databases, large databases, and databases containing
many clusters.

5.4 RelatedWork

From the point of view ofdiscretization, several techniques (Fayyad and Irani, 1993;discretization
Liu et al., 2002; Skubacz and Hollmén, 2000) have been proposed to treat multi-
variate data in the discrete manner. In particular, recently Lin et al. (2007, 2003)
have been proposed SAX, symbolic representation for time series data, which is
becoming a more and more popular discretization technique. They showed that
the quality of clusters becomes better with SAX in both agglomerative hierarchi-
cal clustering and partitional clustering using 𝐾-means. However, since the above
discretization methods including SAX are just data preprocessing, it is difϐicult to
directly achieve efϐicient spatial clustering for ϐinding arbitrarily shaped clusters.
On the other hand, in our BOOL approach, the discretization process is integrated
into the clustering process and clusters are efϐiciently detected with effective use
of sorting (see Example 5.10 and Figure 5.3). Informally, the geometric informa-
tion of “topology” (i.e., metric) of the Euclidean space is appropriately embedded
into the discrete space through the binary encoding, and this embedding enables
effective and efϐicient spatial clustering with binary words of original data.

Many clustering algorithms have been proposed for arbitrary shape clustering
(Berkhin, 2006; Halkidi et al., 2001; Jain et al., 1999a), and some notable clustering
algorithms, SPARCL (Chaoji et al., 2009) and ABACUS (Chaoji et al., 2011), have re-
cently been proposed for massive databases. Although we do not compare BOOL
with these algorithms in exactly the same way, our experiments clearly shows
that BOOL is the fastest among these state-of-the-art clustering algorithms and
that it is robust to the input parameters. Other new approaches include a mass-
based clustering MassTER algorithm (Ting and Wells, 2010). It also has linear time
complexity with respect to the data size, but their results indicate that it is much
slower than BOOL. For instance, MassTER takes 59 seconds for a database with
𝑛 = 70,000 and 𝑑 = 3.

In the following, we brieϐly review spatial (shape-based) clustering algorithms,
including density-based clustering algorithms, agglomerative hierarchical cluster-
ing algorithms, and grid-based algorithms, and compare them to BOOL.

5.4 RELATED WORK 91

(a) DS1 (b) BOOL (c) ௄-means

(d) DS2 (e) BOOL (f) ௄-means

(g) DS3 (h) BOOL (i) ௄-means

(j) DS4 (k) BOOL (l) ௄-means

Figure 5.6 | Synthetic databases DS1 - DS4 and clustering results obtained using BOOL and K-means.

92 CLUSTERING USING BINARY DISCRETIZATION

(a) Horse (b) BOOL (c) ௄-means

(d) Mushroom (e) BOOL (f) ௄-means

(g) Pyramid (h) BOOL (i) ௄-means

(j) Road (k) BOOL (l) ௄-means

Figure 5.7 | Four natural images and corresponding contour maps obtained using BOOL and K-means from pre-
processed databases with three attributes (RGB). Pixels of the same color are in the same cluster.

5.4 RELATED WORK 93

(a) Delta (b) Binary image (c) BOOL (d) ௄-means

(e) Europe (f) Binary image (g) BOOL (h) ௄-means

(i) Norway (j) Binary image (k) BOOL (l) ௄-means

(m) Ganges (n) Binary image (o) BOOL (p) ௄-means

Figure 5.8 | Results for geospatial satellite images obtained using BOOL and K-means. BOOL findsmost of natural
clusters whereas𝐾-means does not.

94 CLUSTERING USING BINARY DISCRETIZATION

Density-based clustering, such as that used in DBSCAN (Ester et al., 1996) and
DENCLUE (Hinneburg and Keim, 1998), is one of the most commonly used ap-
proaches to detect arbitrarily shaped clusters. However, it is quite sensitive to
the parameter settings, as described by (Han and Kamber, 2006) and it is compu-
tationally expensive. Despite BOOL and DBSCAN have close relationship as shown
in Section 5.1.3, our experiments show that BOOL is robust and much faster than
DBSCAN (see Section 5.3).

Guha et al. (1998) introduced the hierarchical agglomerative clustering algo-
rithm CURE for ϐinding arbitrarily shaped clusters. The key to CURE is data parti-
tioning to obtain ϐine cluster representatives. This approach is similar to ours since
we obtain binary words as representatives by discretization and agglomerate clus-
ters by using the obtained representatives. However, the time complexity of CURE
is large and quadratic with respect to data size, so CURE needs data sampling when
it is applied to massive data sets. In contrast, the time complexity of BOOL is linear,
and it is much faster than CURE. Moreover, it can perform exact clustering on mas-
sive data sets. Another hierarchical approach, CHAMELEON (Karypis et al., 1999),
achieves spatial clustering by using a graph partitioning algorithm. However, sev-
eral parameters must be tuned for effective clustering.

Unlike CURE, which is based on data partitioning, grid-based algorithms such
as BANG (Schikuta and Erhart, 1997), STING (Wang et al., 1997), and WaveCluster
(Sheikholeslami et al., 1998) focus on space partitioning. They summarize data in-
formation into a grid structure and achieve clustering by using this structure. For
example, STING assembles summary statistics into a tree of grid-cells. This idea
of data summarization using space partitioning is the same as in BOOL. However,
compared to other such algorithms, BOOL is very simple — it simply discretizes
each data point by using binary encoding, without using statistics. This simplicity
enables it to achieve fast and robust clustering by effectively using data sorting. In
contrast, BOOL shares the major issue about high-dimensional datawith the above
space partitioning algorithms. High-dimensional data are usually too sparse to
clustering since the number of partitioned regions exponentially increases with
respect to the number of dimensions. In the extreme case in BOOL, every object
is not reachable from any other objects even at discretization level 1, hence BOOL
does not work well for such high-dimensional data. Thus combining other tech-
niques such as dimension reduction methods is needed.

5.5 Summary

We have developed a spatial clustering algorithm called BOOL that is the fastest
such algorithm with respect to ϐinding arbitrarily shaped clusters. It is robust,
highly scalable, and noise tolerant, and especially effective for low-dimensional
data such as geographical images. The key to performance is discretization based
on the binary encoding and sorting of data points. BOOL can be viewed as a re-
stricted version of DBSCAN, which is a typical density-based clustering algorithm,
but our hierarchical approach with discretization realizes not only highly speeding
up but also robust clustering which can be easily handled by the user.

BOOL is simple, hence it can be extended to other data mining tasks such as
anomaly detection, semi-supervised learning, and structured data clustering. Fur-
thermore, BOOL can be used for preliminary exploration, especially for various
tasks in computer vision and pattern recognition from massive images.

Part III

With Formal Concept Analysis

“je n’y emploie point d’autres caractères que 0 et 1,
et puis allant à deux, je recommence”

— Gottfried Wilhelm Leibniz, Explication De L’arithmétique Binaire

6

SEMI-SUPERVISED
CLASSIFICATION AND RANKING

NĚĒĊėĔĚĘ ĒĎĝĊĉ-ęĞĕĊ ĉĆęĆ including both discrete (binary or nominal) andmixed-type data
continuous (real-valued) variables are collected by researchers in various re-

search domains from biology to economics. However, despite recent rapid devel-
opment of many data analysis techniques in the ϐields of machine learning, data
mining, and knowledge discovery, only few algorithms such as the decision tree-
based classiϐier (Murthy, 1998) can directly handle such mixed-type data. In par-
ticular, to the best of our knowledge, no learning algorithm treats mixed-type data
in a semi-supervised manner based on discrete approaches.

Semi-supervised learning is a special form of classiϐication (Zhu and Goldberg,semi-supervised learning
2009; Chapelle et al., 2006); a learning algorithm uses both labeled and unlabeled
data to learn classiϐication rules. In real tasks, it is often difϐicult to obtain enough
labeled data since the task of labeling has a high cost in terms of time and money,
whereas lots of unlabeled data can be collected easily. The goal of semi-supervised
learning is to construct a better classiϐier using such large amount of unlabeled
data together with labeled data in short supply.

To effectively use unlabeled mixed-type data for learning (training), we in this
chapter propose a novel semi-supervised learning algorithm, called SELF (SEmi-
supervised Learning via Formal Concept Analysis), which can directly treat mixed-
type data. SELF adopts a popular semi-supervised learning strategy, called cluster-
and-label (Dara et al., 2002; Demiriz et al., 1999), where a clustering algorithm
is ϐirst applied, followed by labeling each cluster using labeled data. One of the
remarkable features of SELF is that it performs the clustering process using For-
mal Concept Analysis (FCA) (Davey and Priestley, 2002; Ganter and Wille, 1998),Formal Concept Analysis (FCA)
which is a mathematical theory for data analysis and knowledge representation in-
troduced by Wille (1982). Recently, Pasquier et al. (1999) proposed to use closed
patterns (itemsets) obtained by FCA as condensed “lossless” representations of
patterns. This new approach has been the subject of further research and exten-
sions (Beslon et al., 2010; Plantevit et al., 2010; Saquer and Jitender, 2010; Zaki,
2000). In SELF, the labeling process is performed on a closed set lattice, which isclosed set lattice
the result of FCA. Informally, this structure describes the maximally general classi-
ϐication rules that explain the training data, thus preventing overϐitting. Moreover,

6.1 RELATED WORK 97

each classiϐication rule can beweighted using the closed set lattice by counting the
number of clusters classiϐied by the rule, resulting in the preference of class labels preference
as a partial order of them for each unlabeled datum. Furthermore, FCA and closed
set lattices enable us to naturally treat incomplete data including missing values.

To summarize, this chapter provides a contribution to both the ϐields of semi-
supervised learning and FCA:

1. To semi-supervised learning: we present a novel approach based on an alge-
braic framework without assuming any data distribution.

2. ToFCA: we study a novel application, semi-supervised learning, using FCA and
closed set lattices.

The behavior of SELF is outlined as a ϐlowchart in Figure 6.1, and this chapter
is organized along it after discussing about related work in Section 6.1. The data
preprocessing phase to construct a context from a given dataset to apply FCA is
explained in Subsection 6.2.1. Missing values are handled in this phase. The learn-
ing phase is described in Subsections 6.2.2 and 6.2.3; Subsection 6.2.2 shows data
clustering and making closed set lattices by FCA and Subsection 6.2.3 explains the
training algorithm of SELF to learn classiϐication rules. Classiϐication by learned
rules is considered in Subsection 6.2.4. Section 6.3 gives empirical evaluation of
SELF and, ϐinally, the key points and future work are summarized in Section 6.4.

6.1 RelatedWork

Many studies used FCA for machine learning (Kuznetsov, 2004), such as classiϐi-
cation (Ganter and Kuznetsov, 2000, 2003), clustering (Zhang et al., 2008), fre-
quent pattern and association rule mining (Jaschke et al., 2006; Pasquier et al.,
1999; Valtchev et al., 2004), and bioinformatics (Blinova et al., 2003; Kaytoue et al.,
2011b; Kuznetsov and Samokhin, 2005). Ganter and Kuznetsov (2000) investi-
gated the problem of binary classiϐication of real-valued data and proposed al-
gorithms based on the JSM-method that produces hypotheses (classiϐiers) using JSM-method
positive and negative examples. Their idea of using the lattice structure derived
by FCA for classiϐication is similar to our approach, but the way of treating con-
tinuous variables is different. Their method discretizes continuous variables by
inequations, called conceptual scaling (Ganter and Wille, 1998), that are given a conceptual scaling
priori, while SELF automatically discretizes them along with the learning process
and no background knowledge and assumption about data are needed.

On the other hand, in machine learning context, decision tree-based algorithms
such as C4.5 (Quinlan, 1993, 1996) can directly treat mixed-type data by discretiz-
ing continuous variables, and there are several discretization techniques (Fayyad
and Irani, 1993; Liu et al., 2002; Skubacz and Hollmén, 2000) to treat continu-
ous variables in a discrete manner. Our approach is different from them since we
integrate discretization process into learning process and avoid overϐitting using
closed set lattices effectively. SELF uses cluster-and-label, or called label propa-
gation, which is a popular approach in semi-supervised learning as mentioned in
the beginning of this chapter (Cheng et al., 2009; Dara et al., 2002; Demiriz et al.,
1999; Hwang and Kuang, 2010; Wang and Zhang, 2006). First SELF makes clusters
without label information by FCA, followed by giving preferences of class labels for
each cluster. However, to date, most of such approaches are designed for only con-
tinuous variables and, to the best of our knowledge, no semi-supervised learning

98 SEMI-SUPERVISED CLASSIFICATION AND RANKING

Figure 6.1 | A flowchart of the pro-
posed SELF algorithm. It learns clas-
sification rules from training data and
applies them to classify test data.
Here we say that a concept is l-
consistent if all labels contained in the
concept are same.

Input training data

Discretize continuous
variables at level k

Preprocess for
discrete variables

k ← 0

Extract classi cation rules
using labeled data

All labeled data
are contained in

consistent concepts

Classify test data

Output a result

Make a context

k ← k + 1

YES

NO

Remove objects contained
in consistent concepts

Data preprocessing phase

Learning phase

Classi cation phase

Make a closed set lattice
(concept lattice) by FCA

algorithm based on cluster-and-label can treat mixed-type data including discrete
variables appropriately. Since SELF uses FCA for clustering, it needs no distance
calculation and no data distribution, which is one of features of SELF.

There exists only one study by Kok and Domingos (2009) which is related to
the idea of putting original data on lattices. They proposed a learning algorithm via
hypergraph lifting, which constructs clusters by hypergraphs and learns on them.
Their idea is thus similar to ours since we also “lift” raw data to the space of a
closed set lattice via FCA. However, it is difϐicult to treat continuous variables in
their approach, thereby our approach can be more useful for machine learning
and knowledge discovery from mixed-type data.

SELF achieves not only semi-supervised learning but also label ranking using
the preference for each class label. Recently, the concept of preference has at-
tracted more and more attention in artiϐicial intelligence including machine learn-
ing and knowledge discovery, resulting in formalization of the research topic of
“preference learning” (Fürnkranz and Hüllermeier, 2010). In particular, label rank-

6.2 THE SELF ALGORITHM 99

ing (Cheng et al., 2010; Hülermeier et al., 2008; Vembu and Gärtner, 2010) has
been treated in preference learning as an extension of traditional supervised clas-
siϐication, where the objective is to obtain a ranker which gives a (partial) order
of labels for each datum. SELF is the ϐirst algorithm that treats label ranking of
mixed-type data by weighting each classiϐication rule through closed set lattices.

6.2 The SELF Algorithm

We present the SELF algorithm in this section, which is the main part of this chap-
ter. The behavior of SELF is illustrated in Figure 6.1; ϐirst it performs data pre-
processing to make a context from a given dataset, second it constructs concept
lattices by FCA, and third it learns the preference for each class label. Notations
about databases are same as those in Chapter 5 (see Subsection 5.1.1).

6.2.1 Data Preprocessing

The aim of data preprocessing is to construct a (formal) context, a binary matrix
specifying a set of objects and their attributes, to apply FCA to training data. Since
we are interested in mixed-type data, we consider two types of variables, discrete
and continuous. Formally, if a feature ℎ ∈ 𝐻 is discrete,Dom(ℎ) = 𝑆∪{⊥} for some
countable set 𝑆. For instance, 𝑆 = {T, F} if the feature ℎ is binary and 𝑆 is a (ϐinite)
set of symbols if 𝑗 is nominal (categorical). If ℎ is continuous, Dom(ℎ) = ℝ ∪ {⊥},
where ℝ is the set of real numbers.

Deϐinition 6.1: Context
In FCA, we call a triplet (𝐺,𝑀, 𝐼) context context. Here 𝐺 and 𝑀 are sets and 𝐼 ⊆ 𝐺 × 𝑀
is a binary relation between 𝐺 and 𝑀. The elements in 𝐺 are called objects, and
those in 𝑀 are called attributes.

For a given table 𝜏 = (𝐻, 𝑋), we always identify the set of objects 𝐺 with set(𝑋) =
{𝑥ଵ, 𝑥ଶ, … , 𝑥௡}.

In the data preprocessing, for each feature ℎ ∈ 𝐻 of a table 𝜏, we independently
construct a context (𝐺,𝑀௛ , 𝐼௛) and combine them into a context (𝐺,𝑀, 𝐼). For this
process, we always qualify attributes to be disjoint by denoting each element 𝑚 qualify
of the attribute 𝑀௛ by ℎ.𝑚 following the notations used in the database systems
literature (Garcia-Molina et al., 2008).

First, we focus on preprocessing for discrete variables. Since a context is also
a discrete representation of a dataset, this process is directly achieved as follows:
For each feature ℎ, the set of attributes

𝑀௛ = { ℎ.𝑚 ห 𝑚 ∈ Dom(ℎ) ⧵ {⊥} }

and, for each value 𝑥௜(ℎ),

(𝑥௜ , ℎ.𝑚) ∈ 𝐼௛ if and only if 𝑥௜(ℎ) = 𝑚.

In this way, discrete values are translated into a context and missing values are
naturally treated. Algorithm 6.1 performs this translation.

100 SEMI-SUPERVISED CLASSIFICATION AND RANKING

Algorithm 6.1: Data preprocessing for discrete variables

Input: Table 𝜏 = (𝐻, 𝑋) whose variables are discrete
Output: Context (𝐺,𝑀ୈ, 𝐼ୈ)

function CĔēęĊĝęD(𝜏)
1: 𝐺 ← set(𝑋)
2: for each ℎ ∈ 𝐻
3: 𝑀௛ ← {ℎ.𝑚 ∣ 𝑚 ∈ Dom(ℎ) ⧵ {⊥} }
4: 𝐼௛ ← { (𝑥, ℎ.𝑥(ℎ)) ∣ 𝑥 ∈ 𝐺 and 𝑥(ℎ) ≠ ⊥ }
5: end for
6: combine all (𝐺,𝑀௛ , 𝐼௛) with ℎ ∈ 𝐻 into (𝐺,𝑀ୈ, 𝐼ୈ)
7: return (𝐺,𝑀ୈ, 𝐼ୈ)

Example 6.2
Given a table 𝜏 = (𝐻, 𝑋) with 𝐻 = {1, 2, 3} and 𝑋 = 𝑥ଵ, 𝑥ଶ such that

(𝑥ଵ(1), 𝑥ଵ(2), 𝑥ଵ(3)) = (T, ⊥, C),
(𝑥ଶ(1), 𝑥ଶ(2), 𝑥ଶ(3)) = (F, F, ⊥).

This table can be represented in the following manner.

𝐻 1 2 3

𝑋 𝑥ଵ T ⊥ C
𝑥ଶ F F ⊥

The domains are given as Dom(1) = Dom(2) = {T, F} and Dom(3) = {A, B, C}.
Here we have

𝐺 = {𝑥ଵ, 𝑥ଶ},
(𝑀ଵ, 𝐼ଵ) = ({1.T, 1.F}, {(1, 1.T), (𝑥ଶ, 1.F)}),
(𝑀ଶ, 𝐼ଶ) = ({2.T, 2.F}, {(𝑥ଶ, 2.F)}),
(𝑀ଷ, 𝐼ଷ) = ({3.A, 3.B, 3.C}, {(𝑥ଵ, 3.C)}).

Thus we have the context (𝐺,𝑀, 𝐼) such that

𝑀 = 𝑀ଵ ∪𝑀ଶ ∪𝑀ଷ = {1.T, 1.F, 2.T, 2.F, 3.A, 3.B, 3.C},
𝐼 = 𝐼ଵ ∪ 𝐼ଶ ∪ 𝐼ଷ = {(𝑥ଵ, 1.T), (𝑥ଵ, 3.C), (𝑥ଶ, 1.F), (𝑥ଶ, 2.F)}.

It is visualized as a cross-table as follows:

1.T 1.F 2.T 2.F 3.A 3.B 3.C
𝑥ଵ × ×
𝑥ଶ × ×

Second, we make a context from continuous variables using discretization. This
process is embedded in the learning process (see Figure 6.1) and discretizing res-
olution increases along with the process. The degree of resolution is denoted by a

6.2 THE SELF ALGORITHM 101

Algorithm 6.2: Data preprocessing for continuous variables

Input: Table 𝜏 = (𝐻, 𝑋) whose variables are continuous,
discretization level 𝑘

Output: Context (𝐺,𝑀େ, 𝐼େ)

function CĔēęĊĝęC(𝜏, 𝑘)
1: 𝐺 ← set(𝑋)
2: for each ℎ ∈ 𝐻
3: 𝑀௛ ← {ℎ.1, ℎ.2, … , ℎ.2௞ }
4: Normalize values in the feature ℎ by min-max normalization
5: 𝐼௛ ← ∅
6: for each 𝑥 ∈ 𝐺
7: if 𝑥(ℎ) = 0 then 𝐼௛ ← 𝐼௛ ∪ {(𝑥, 1)}
8: else if 𝑥(ℎ) ≠ 0 and 𝑥(ℎ) ≠ ⊥ then
9: 𝐼௛ ← 𝐼௛ ∪ {(𝑥, ℎ.𝑎)}, where (𝑎 − 1)/2௞ < 𝑥(ℎ) ≤ 𝑎/2௞

10: end if
11: end for
12: end for
13: combine all (𝐺,𝑀௛ , 𝐼௛) with ℎ ∈ 𝐻 into (𝐺,𝑀େ, 𝐼େ)
14: return (𝐺,𝑀େ, 𝐼େ)

natural number 𝑘, called discretization level discretization leveland, in the following, we explain how
to discretize continuous variables at ϐixed level 𝑘. First we use min-max normal-
ization (Han and Kamber, 2006) so that every datum is in the closed interval [0, 1].
For every feature ℎ, each value 𝑥(ℎ) is mapped to a value 𝑦(ℎ) such that

𝑦(ℎ) =
𝑥(ℎ) − min௫∈ୱୣ୲(௑) 𝑥(ℎ)

max௫∈ୱୣ୲(௑) 𝑥(ℎ) − min௫∈ୱୣ୲(௑) 𝑥(ℎ)
.

Next, we discretize values in [0, 1] and make a context using the binary encoding
of real numbers, following the approach we have used in the previous chapters. At
discretization level 𝑘, 𝑀௛ for a feature ℎ ∈ 𝐻 is always the set {ℎ.1, ℎ.2, … , ℎ.2௞}.
For each value 𝑥௜(ℎ), if 𝑥௜(ℎ) = 0, then (𝑥௜ , ℎ.1) ∈ 𝐼௛ . Otherwise if 𝑥௜(ℎ) ≠ 0, then
(𝑥௜ , ℎ.𝑎) ∈ 𝐼௛ if and only if

𝑎 − 1
2௞

< 𝑥௜(ℎ) ≤
𝑎
2௞

.

If 𝑥௜(ℎ) = ⊥, then (𝑥௜ , 𝑚) ∉ 𝐼௛ for all 𝑚 ∈ 𝑀௛ . This means that if we encode the
value 𝑥௜(ℎ) as an inϐinite sequence 𝑝 = 𝑝଴𝑝ଵ𝑝ଶ… , a context at level 𝑘 is decided
by the ϐirst 𝑘 bits 𝑝଴𝑝ଵ…𝑝௞ିଵ. Each value is converted to exactly one relation of
a context if it is not missing. Algorithm 2 shows the above process for making a
context from continuous variables.
Example 6.3
Given a table 𝜏 = (𝐻, 𝑋) with 𝐻 = {1, 2, 3, 4} and 𝑋 = 𝑥ଵ, 𝑥ଶ such that

(𝑥ଵ(1), 𝑥ଵ(2), 𝑥ଵ(3)) = (T, C, 0.35, 0.78),
(𝑥ଶ(1), 𝑥ଶ(2), 𝑥ଶ(3)) = (⊥, ⊥, 0.813, ⊥).

102 SEMI-SUPERVISED CLASSIFICATION AND RANKING

It can be represented as follows:

𝐻 1 2 3 4

𝑋 𝑥ଵ T C 0.35 0.78
𝑥ଶ ⊥ ⊥ 0.813 ⊥

where the ϐirst and second features are discrete withDom(1) = {T, F} andDom(2)
= {A, B, C}, and the third and forth are continuous. Assume that discretization level
𝑘 = 1. We have

𝐺 = {𝑥ଵ, 𝑥ଶ},
(𝑀ଵ, 𝐼ଵ) = ({1.T, 1.F}, {(𝑥ଵ, 1.T)}),
(𝑀ଶ, 𝐼ଶ) = ({2.A, 2.B, 2.C}, {(𝑥ଵ, 2.C)}),
(𝑀ଷ, 𝐼ଷ) = ({3.1, 3.2}, {(𝑥ଵ, 3.1), (𝑥ଶ, 3.2)}),
(𝑀ସ, 𝐼ସ) = ({4.1, 4.2}, {(𝑥ଵ, 4.2)}).

Thus we have the context (𝐺,𝑀, 𝐼) such that 𝑀 = 𝑀ଵ ∪ 𝑀ଶ ∪ 𝑀ଷ ∪ 𝑀ସ and 𝐼 =
𝐼ଵ ∪ 𝐼ଶ ∪ 𝐼ଷ ∪ 𝐼ସ, which is visualized as a cross-table as follows:

1.T 1.F 2.A 2.B 2.C 3.1 3.2 4.1 4.2
𝑥ଵ × × × ×
𝑥ଶ ×

6.2.2 Clustering and Making Lattices by FCA

From a context obtained by the data preprocessing, we generate closed sets as
clusters of data points and construct closed set lattices by FCA. First we summa-
rize FCA (see literatures (Davey and Priestley, 2002; Ganter and Wille, 1998) for
detail). We always assume that a given table 𝜏 is converted into a context (𝐺,𝑀, 𝐼)
by Algorithms 6.1 and 6.2.

Deϐinition 6.4: Concept
For subsets 𝐴 ⊆ 𝐺 and 𝐵 ⊆ 𝑀, we deϐine

𝐴′ ≔ {𝑚 ∈ 𝑀 ∣ (𝑔,𝑚) ∈ 𝐼 for all 𝑔 ∈ 𝐴},
𝐵′ ≔ {𝑔 ∈ 𝐺 ∣ (𝑔,𝑚) ∈ 𝐼 for all 𝑚 ∈ 𝐵}.

concept, extent, intent
Then, a pair (𝐴, 𝐵)with𝐴 ⊆ 𝐺 and𝐵 ⊆ 𝑀 is called a concept of a context (𝐺,𝑀, 𝐼)
if 𝐴′ = 𝐵 and 𝐴 = 𝐵′. The set 𝐴 is called an extent and 𝐵 an intent.

Each operator ′ is a Galois connection between the power set lattices on 𝐺 andGalois connection
𝑀, respectively, hence the mapping ′′ becomes a closure operator on the context
(𝐺,𝑀, 𝐼). This means that, for each concept (𝐴, 𝐵), 𝐴 and 𝐵 are (algebraic) closedclosed
sets. Note that a subset 𝐴 ⊆ 𝐺 (resp. 𝐵 ⊆ 𝑀) is the extent (resp. intent) of some
concept if and only if 𝐴′′ = 𝐴 (resp. 𝐵′′ = 𝐵). Thus a set of objects 𝐴 ⊆ 𝐺 forms a
cluster if and only if 𝐴′′ = 𝐴. Each object usually belongs to more than one cluster,
hence this method is not “crisp” clustering.

The set of concepts over (𝐺,𝑀, 𝐼) is written by 𝔅(𝐺,𝑀, 𝐼) and called the con-
cept lattice. If we focus on either one of the set of objects or attributes, this lat-concept lattice

6.2 THE SELF ALGORITHM 103

tice is called the closed set lattice closed set lattice. In particular, in the context of frequent pattern
mining, a set of attributes corresponds to an itemset and the lattice is called the
closed itemset lattice. For a pair of concepts (𝐴ଵ, 𝐵ଵ) ∈ 𝔅(𝐺,𝑀, 𝐼) and (𝐴ଶ, 𝐵ଶ) ∈
𝔅(𝐺,𝑀, 𝐼), we write (𝐴ଵ, 𝐵ଵ) ≤ (𝐴ଶ, 𝐵ଶ) if 𝐴ଵ ⊆ 𝐴ଶ. Then (𝐴ଵ, 𝐵ଵ) ≤ (𝐴ଶ, 𝐵ଶ)
holds if and only if 𝐴ଵ ⊆ 𝐴ଶ (and if and only if 𝐵ଵ ⊇ 𝐵ଶ). This relation ≤ becomes
an order on 𝔅(𝐺,𝑀, 𝐼) in the mathematical sense and ⟨𝔅(𝐺,𝑀, 𝐼), ≤⟩ becomes a
complete lattice.

Let 𝒞 ⊆ 𝔅(𝐺,𝑀, 𝐼). A concept (𝐴, 𝐵) ∈ 𝒞 is a maximal element of 𝒞 if (𝐴, 𝐵) ≤
(𝑋, 𝑌) and (𝑋, 𝑌) ∈ 𝒞 imply (𝐴, 𝐵) = (𝑋, 𝑌) for all (𝑋, 𝑌) ∈ 𝒞. We write the set of
maximal elements of 𝒞 by Max𝒞.

Many algorithms are available for constructing closed set lattices, or concept
lattices, and the algorithm proposed by Makino and Uno (2004) is known to be
one of the fastest algorithms. Their algorithm enumerates all maximal bipartite
cliques in a bipartite graph with 𝑂(Δଷ) delay, where Δ is the maximum degree of
the given bipartite graph, that is,

Δ = max ቊ #𝐽 ቤ 𝐽 ⊆ 𝐼, where 𝑔 = ℎ for all (𝑔,𝑚), (ℎ, 𝑙) ∈ 𝐽, or
𝑚 = 𝑙 for all (𝑔,𝑚), (ℎ, 𝑙) ∈ 𝐽 ቋ

(#𝐽 is the number of elements in 𝐽) in the FCA context. Since we can easily check
that each context and concept exactly coincide with a bipartite graph and a maxi-
mal bipartite clique, respectively (Figure 6.2), we can use their algorithm directly.
For empirical experiments, we use the program LCM by Uno et al. (2005) provided
by the authors to enumerate all concepts and construct the closed set lattice.
Example 6.5
Given the following context:

1

x2

x1

x3 3

5

4

2

x4

Figure 6.2 | The bipartite graph cor-
responding to the context in Exam-
ple 6.5.

1 2 3 4 5
𝑥ଵ × × ×
𝑥ଶ × × ×
𝑥ଷ ×
𝑥ସ × ×

There exist eight concepts in total;

(∅, {1, 2, 3, 4, 5}), ({𝑥ଵ}, {1, 2, 4}), ({𝑥ଶ}, {2, 4, 5}), ({𝑥ଷ}, {3}),
({𝑥ଵ, 𝑥ଶ}, {2, 4}), ({𝑥ଶ, 𝑥ସ}, {2, 5}), ({𝑥ଵ, 𝑥ଶ, 𝑥ସ}, {2}), and ({𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ}, ∅),

and Δ = 3. We show the closed set lattice in Figure 6.3. Let

𝒞 = ቊ (∅, {1, 2, 3, 4, 5}), ({𝑥ଵ}, {1, 2, 4}), ({𝑥ଶ}, {2, 4, 5}),
({𝑥ଵ, 𝑥ଶ}, {2, 4}), ({𝑥ଶ, 𝑥ସ}, {2, 5})} ቋ .

Then max𝒞 = {({𝑥ଵ}, {1, 2, 4}), ({𝑥ଵ, 𝑥ଶ}, {2, 4}), ({𝑥ଶ, 𝑥ସ}, {2, 5})}.

6.2.3 Learning Classiϐication Rules

Here we present the main learning algorithm of SELF in Algorithm 3, which obtains
a set of classiϐication rules from a table 𝜏 for training. In this chapter, a classiϔica-
tion rule is a pair of a set of attributes and a label since, intuitively, every unlabeled classification rule

104 SEMI-SUPERVISED CLASSIFICATION AND RANKING

Figure 6.3 | The closed set lattice
(concept lattice) constructed from the
context given in Example 6.5. In this
diagram, each dot denotes a concept,
which are treated as a cluster in SELF.

x1x2x3

x2, x4
x1, x2

x1, x2, x4

x1, x2, x3, x4

1, 2, 43

2, 42, 5

2

2, 4, 5

1, 2, 3, 4, 5
∅

∅

tuple (datum) is classiϐied to the associated label if it has the same attributes. SELF
generates a set of classiϐication rules at each discretization level. We give the pre-
cise algorithm of classiϐication in the next subsection.

We introduce some notations. For each object 𝑔 ∈ 𝐺, we denote a label, anlabel
identiϐier of a class, of 𝑔 by Λ(𝑔), and if 𝑔 is unlabeled; i.e., the label information is
missing, we write Λ(𝑔) = ⊥. Moreover, we deϐine

Γ(𝐺) ≔ { 𝑔 ∈ 𝐺 ห Λ(𝑔) ≠ ⊥ }

hence objects in Γ(𝐺) are labeled and those in 𝐺 ⧵ Γ(𝐺) are unlabeled.
Deϐinition 6.6: l-consistency
For a concept (𝐴, 𝐵) ∈ 𝔅(𝐺,𝑀, 𝐼), we say that it is 𝑙-consistent

l-consistent
if Γ(𝐴) ≠ ∅ and

Λ(𝑔) = Λ(ℎ) for all 𝑔, ℎ ∈ Γ(𝐴).

Note that a concept with Γ(𝐴) = ∅ (all labels are missing) is not 𝑙-consistent.
First SELF performs data preprocessing and makes the context (𝐺,𝑀, 𝐼) from a

given table at each discretization level𝑘 using the algorithms given in Section 6.2.1.
Second it constructs the concept lattice 𝔅(𝐺,𝑀, 𝐼) using both labeled and unla-
beled tuples and ϐinds 𝑙-consistent concepts using labeled tuples (objects). Third
it outputs the sets of classiϐication rules such that

ℛ௞ = { (𝐵, 𝜆) ห (𝐴, 𝐵) ∈ Max𝒞௞ and 𝜆 = Λ(𝑔) with 𝑔 ∈ Γ(𝐴) } , where
𝒞௞ = { (𝐴, 𝐵) ∈ 𝔅(𝐺,𝑀, 𝐼) ห (𝐴, 𝐵) is 𝑙-consistent }

at discretization level𝑘. The lattice enables us to avoid overϐitting since, informally,
attributes of maximal concepts correspond to the most general classiϐication rules.
If some objects that are not contained in 𝑙-consistent concepts remains, it reϐines
discretization; i.e., increases discretization level, and repeats the above procedure
for the remaining objects.

Moreover, SELF weights each classiϐication rule. For a classiϐication rule 𝑅 =
(𝐵, 𝜆), the weight 𝜔(𝑅) is deϐined as follows:

𝜔(𝑅) ≔ # { (𝐶, 𝐷) ∈ 𝔅(𝐺,𝑀, 𝐼) ห 𝐷 ⊇ 𝐵 } .

6.2 THE SELF ALGORITHM 105

Algorithm 6.3: SELF algorithm

Input: Table 𝜏 = (𝐻, 𝑋)
Output: Classiϐication rules ℛଵ, ℛଶ, … , ℛ௄

function MĆĎē(𝜏)
1: Divide 𝜏 vertically into two tables 𝜏ୈ and 𝜏େ, where 𝜏ୈ contains all

discrete variables in 𝜏 and 𝜏େ contains all continuous variables in 𝜏
2: (𝐺,𝑀ୈ, 𝐼ୈ) ← CĔēęĊĝęD(𝜏ୈ)

// make a context from discrete variables of 𝜏
3: 𝑘 ← 1 // 𝑘 is discretization level
4: LĊĆėēĎēČ(𝜏େ, 𝐺,𝑀ୈ, 𝐼ୈ, 𝑘) // use this function recursively

function LĊĆėēĎēČ(𝜏େ, 𝐺,𝑀ୈ, 𝐼ୈ, 𝑘)
1: (𝐺,𝑀େ, 𝐼େ) ← CONTEXTC(𝜏େ, 𝑘)

// make a context from continuous variables of 𝜏 at level 𝑘
2: make (𝐺,𝑀, 𝐼) from (𝐺,𝑀ୈ, 𝐼ୈ) and (𝐺,𝑀େ, 𝐼େ)
3: construct the concept lattice 𝔅(𝐺,𝑀, 𝐼) from (𝐺,𝑀, 𝐼)
4: 𝒞 ← { (𝐴, 𝐵) ∈ 𝔅(𝐺,𝑀, 𝐼) ∣ (𝐴, 𝐵) is 𝑙-consistent }
5: ℛ௞ ← { (𝐵, Λ(𝑔)) ∣ (𝐴, 𝐵) ∈ Max𝒞 and 𝑔 ∈ Γ(𝐴) }
6: output ℛ௞
7: 𝐺 ← 𝐺 ⧵ { 𝑔 ∣ 𝑔 ∈ 𝐴 for some (𝐴, 𝐵) ∈ 𝒞 }
8: remove corresponding attributes and relations from𝑀ୈ and 𝐼ୈ
9: remove corresponding tuples from 𝜏େ

10: if Γ(𝐺) = ∅ then halt
11: else LĊĆėēĎēČ(𝜏େ, 𝐺,𝑀ୈ, 𝐼ୈ, 𝑘 + 1)
12: end if

Intuitively, the weight of a rule 𝑅 means its importance since it is the number of
clusters classiϐied by the rule. Using the weight of rules, label ranking is achieved
(see the next subsection).

Example 6.7
Given a dataset 𝜏 = (𝐻, 𝑋) and its labels as follows:

𝐻 1 2 3

𝑋

𝑥ଵ T C 0.28
𝑥ଶ F A 0.54
𝑥ଷ T B ⊥
𝑥ସ F A 0.79
𝑥ହ T C 0.81

Label
1
1
⊥
2
⊥

where Dom(1) = {T, F} ∪ {⊥}, Dom(2) = {A, B, C} ∪ {⊥}, and Dom(3) = ℝ ∪ {⊥}.
At discretization level 1, we have the following context:

106 SEMI-SUPERVISED CLASSIFICATION AND RANKING

Figure 6.4 | The closed set lattices
(concept lattices) at discretization lev-
els 1 and 2 constructed during the
learning phase in Example 6.7. In
these diagrams, each black dot de-
notes the maximal l-consistent con-
cept in the set of concepts covered by
the dotted line.

x2, x4

1.T

∅
1.T,1.F,2.A,2.B,2.C,3.1,3.2

x5 x1 x3

x2, x4, x5 x1, x5

x1, x3, x5

x1, x2, x3, x4, x5

3.2 1.T,2.C

1.T,2.C,3.1 1.T,2.B1.T,2.C,3.21.F,2.A,3.2

1.T,1.F,2.A,2.B,2.C,
3.1,3.2,3.3,3.4
∅

x4 x4

x2, x4
1.F,2.A

1.F,2.1,3.41.F,2.A,3.3

∅Level 1 Level 2

1.T 1.F 2.A 2.B 2.C 3.1 3.2
𝑥ଵ × × ×
𝑥ଶ × × ×
𝑥ଷ × ×
𝑥ସ × × ×
𝑥ହ × × ×

We show the closed set lattice in the left-hand side in Figure 6.4. By SELF, we obtain
ℛଵ = {({1.T}, 1)} since the concept ({𝑥ଵ, 𝑥ଷ, 𝑥ହ}, {1.T}) is the maximal 𝑙-consistent
concept, and there is no 𝑙-consistent concept that contains 𝑥ଶ or 𝑥ସ. This classiϐi-
cation rule means “For a tuple 𝑥, if 𝑥(1) = T, then 𝑥 is classiϐied to the class 1”. The
weight is calculated as 𝜔({1.T}, 1) = 6. SELF removes objects 𝑥ଵ, 𝑥ଷ, and 𝑥ହ con-
tained in the 𝑙-consistent concepts and proceeds to the next level. At discretization
level 2, we have the following context:

1.T 1.F 2.A 2.B 2.C 3.1 3.2 3.3 3.4
𝑥ଶ × × ×
𝑥ସ × × ×

The right-hand side in Figure 6.4 shows the closed set lattice of the above context,
and we obtain ℛଶ = {({1.F, 2.A, 3.3}, 1), ({1.F, 2.A, 3.4}, 2)}. For instance, the ϐirst
rule means “For a tuple 𝑥, if 𝑥(1) = F, 𝑥(2) = A, and 0.5 < 𝑥(3) ≤ 0.75, its class
label is 1”. The weight are 2 for both rules.

We show that SELF always stops in ϐinite time if there are no conϐlicting objects.
Namely, for a table 𝜏 = (𝐻, 𝑋), if there is no pair𝑥, 𝑦 ∈ set(𝑋) such thatΛ(𝑥) ≠ Λ(𝑦)
and 𝑥(ℎ) = 𝑦(ℎ) for all ℎ ∈ 𝐻, Algorithm 3 stops in ϐinite time. This statement is
proved in the following way: if discretization level 𝑘 is large enough, we have the
concept lattice 𝔅(𝐺,𝑀, 𝐼), where for every object 𝑥 ∈ 𝐺, there exists a concept
(𝐴, 𝐵) such that 𝐴 = {𝑥} since there is no pair 𝑥, 𝑦 ∈ 𝐺 satisfying 𝑥(ℎ) = 𝑦(ℎ)
for all ℎ ∈ 𝐻. Thus each object 𝑥 with Λ(𝑥) ≠ ⊥ must be contained in some 𝑙-
consistent concept, and the algorithm stops. Note that the algorithm works even
if Γ(𝐺) = 𝐺; i.e., all objects have labels, hence it also can be viewed as a supervised
classiϐication method.

6.2 THE SELF ALGORITHM 107

Algorithm 6.4: Classiϐication

Input: Classiϐication rules ℛଵ, ℛଶ, … , ℛ௄ , table 𝜐 = (𝐻, 𝑦), and
the set of labels ℒ

Output: Preference of each label

function CđĆĘĘĎċĞ(ℛଵ, ℛଶ, … , ℛ௄ , 𝜐)
1: Divide 𝜐 vertically into two tables 𝜐ୈ and 𝜐େ, where 𝜐ୈ contains all

discrete variables in 𝜐 and 𝜐େ contains all continuous variables in 𝜐
2: (𝐺,𝑀ୈ, 𝐼ୈ) ← CĔēęĊĝęD(𝜐ୈ)

// make a context from discrete values of 𝜐
3: for each 𝜆 ∈ ℒ
4: lPref(𝜆) ← 0
5: for each 𝑘 ∈ {1, 2, … , 𝐾}
6: (𝐺,𝑀େ, 𝐼େ) ← CĔēęĊĝęC(𝜐େ, 𝑘)

// make a context from continuous values of 𝜐 at level 𝑘
7: make a context (𝐺,𝑀, 𝐼) from (𝐺,𝑀ୈ, 𝐼ୈ) and (𝐺,𝑀େ, 𝐼େ)
8: lPref(𝜆) ← lPref(𝜆) + ∑ோ∈𝒬 𝜔(𝑅), where

𝒬 = { (𝐵, 𝜆) ∈ ℛ௞ ∣ (𝑦, 𝑏) ∈ 𝐼 for all 𝑏 ∈ 𝐵 }
9: end for

10: output lPref(𝜆)
11: end for

The time complexity of learning by SELF is 𝑂(𝑛𝑑) + 𝑂(Δଷ𝑁) such that

𝑁 = max
௞∈{ଵ,ଶ,…,௄}

#𝔅(𝐺௞ , 𝑀௞ , 𝐼௞),

where (𝐺௞ , 𝑀௞ , 𝐼௞) is the context at discretization level 𝑘 and 𝐾 is the level where
SELF stops since data preprocessing takes 𝑂(𝑛𝑑), making a concept lattice takes
less than 𝑂(Δଷ𝑁), and obtaining classiϐication rules takes less than 𝑂(𝑁).

6.2.4 Classiϐication

Now we have sets of classiϐication rules ℛଵ, ℛଶ, … , ℛ௄ for each discretization
level from training mixed-type data including labeled and unlabeled data using
Algorithms 6.1, 6.2, and 6.3. In this section, we show how to classify a new unla-
beled datum using the rules. We assume that such a new datum is given as a table
𝜐 = (𝐻, 𝑦), where the body 𝑙-consists of only one tuple 𝑦.

Algorithm 6.4 performs classiϐication using the obtained rules ℛଵ, ℛଶ, … , ℛ௄ .
The algorithm is levelwise; i.e., at each level 𝑘, it makes a context (𝐺,𝑀, 𝐼) from the
table 𝜐 = (𝐻, 𝑦) and apply the set of rules ℛ௞ to it. Let ℒ be the domain of class
labels. SELF checks all rules inℛ௞ at each discretization level 𝑘 and, for each label
𝜆 ∈ ℒ, it outputs the preference of the label 𝜆.

108 SEMI-SUPERVISED CLASSIFICATION AND RANKING

Deϐinition 6.8: l-preference
For a label 𝜆 ∈ ℒ, its 𝑙-preference

l-preference
is deϐined as

lPref(𝜆) ≔
௄

෍
௞ୀଵ

෍
ோ∈𝒬

𝜔(𝑅),

where

𝒬 = { (𝐵, 𝜆) ∈ ℛ௞ ห (𝑦, 𝑏) ∈ 𝐼 for all 𝑏 ∈ 𝐵 }

by summing up weights of rules.

Note that the set 𝐺 is always a singleton {𝑦} in the classiϐication phase. The result
means that if lPref(𝜆) > lPref(𝜆′) for labels𝜆 and𝜆′, 𝜆 is preferable than𝜆′, and vice
versa, and if lPref(𝜆) = lPref(𝜆), the preference of 𝜆 and 𝜆′ are same, resulting in
thepartial orderover the set of labelsℒ. Thus the task of label ranking is performed
by the preference lPref. Moreover, if we pick up the label

𝜆 ∈ argmaxఒ∈ℒlPref(𝜆), (6.1)

multiclass classiϐication is also achieved directly.
Example 6.9
Let us consider the case discussed in Example 6.7. A tuple 𝑦 such that

(𝑦(1), 𝑦(2), 𝑦(3)) = (T, B, 0.45)

satisϐies only the rule ({1.T}, 1) ∈ ℛଵ. Thus we have lPref(1) = 6 and lPref(2) = 0
for labels 1 and 2, respectively. A tuple 𝑧 with

(𝑧(1), 𝑧(2), 𝑧(3)) = (F, A, 0.64)

satisϐies only the rule ({1.F, 2.A, 3.3}), hence lPref(1) = 0 and lPref(2) = 2.

6.3 Experiments

Here we empirically evaluate SELF. Our experiments consist of two parts: one is
about multiclass classiϐication, and the other is about label ranking.

6.3.1 Methods

Environment

SELF was implemented in R version 2.12.1 (R Development Core Team, 2011) and
all experiments were performed in the R environment. For enumeration of all con-
cepts and construction of a closed set lattice from a context, we used LCM¹ dis-
tributed by Uno et al. (2005), which was implemented in C.

¹http://research.nii.ac.jp/~uno/codes.htm

http://research.nii.ac.jp/~uno/codes.htm

6.3 EXPERIMENTS 109

Name # Data # Classes # Features
Discrete Continuous

abalone 4177 28 1 7
allbp 2800 3 2 3
anneal 798 5 28 10
arrhythmia 452 13 5 5
australian 690 2 7 4
crx 690 2 9 6
echocardiogram 131 2 1 7
heart 270 2 7 6
hepatitis 155 2 13 6
horse colic 368 2 8 2

Table 6.1 | Statistics for datasets col-
lected fromUCI repository used for ex-
periments.

Datasets

We collected ten mixed-type datasets from UCI repository (Frank and Asuncion,
2010): abalone, allbp, anneal, arrhythmia, australian, crx, echocardiogram, heart,
hepatitis, and horse colic. Their basic statistics are summarized in Table 6.1. Data-
sets allbp, anneal, arrhythmia, australian, crx, echocardiogram, hepatitis, and horse
colic included missing values, which were directly treated in SELF. In other learn-
ing algorithms, we ignored all tuples which have missing values since they cannot
treat such datasets appropriately.

In label ranking, we used four datasets: abalone, allbp, anneal, and arrhythmia,
which have more than three classes. The other datasets had only two classes and
could not be used for label ranking evaluation.

Control Algorithms

In multiclass classiϐication, three learning algorithms were adopted: the decision
tree-based classiϐier implemented inR supplied in the tree package (Ripley, 1996),
SVM with the RBF kernel (𝐶 = 5 and 𝛾 = 0.05) in the kernlab package (Karat-
zoglou et al., 2004), and the 𝑘 nearest neighbor algorithm (𝑘 = 1 and 5) in the
class package. Notice that only the decision tree-based algorithm can treat mixed-
type data directly, which is one of typical such learning algorithms. All discrete
values were treated as continuous in SVM and 𝑘NN.

Evaluation

In classiϐication, for each dataset, the following procedure was repeated 20 times
and the mean and s.e.m. (standard error of the mean) of accuracy was obtained:
1) the number of labeled data or features was ϐixed, where the range was from 10
to 100 and 2 to 10, respectively, 2) labeled training data were sampled randomly,
3) labels of the remaining data were predicted by respective learning algorithms,
and 4) the accuracy was obtained. The equation (6.1) was used to determine the
most preferable label for each unlabeled datum. If there exists more than two such
labels, we chose the smallest one.

We adopted two criteria: correctness and completeness, which was used in the correctness
completenessliterature (Cheng et al., 2010), to evaluate partial orders of labels in label ranking.

Correctness coincides with the gamma rank correlation (Goodman and Kruskal,

110 SEMI-SUPERVISED CLASSIFICATION AND RANKING

1979), which is the normalized difference between the number of correctly ranked
pairs and that of incorrectly ranked pairs. Let ℒ be the set of class labels and we
denote by≺∗ the ground truth of the partial order over the set of labels ℒ. Assume
that ≺ is a predicated partial order. Here we deϐine

𝐶 ≔ # { (𝜆, 𝜆′) ∈ ℒ × ℒ ห 𝜆 ≺ 𝜆′ and 𝜆 ≺∗ 𝜆′ } ,
𝐷 ≔ # { (𝜆, 𝜆′) ∈ ℒ × ℒ ห 𝜆 ≺ 𝜆′ and 𝜆′ ≺∗ 𝜆 } .

Then, the correctness is deϐined by

CR(≺,≺∗) ≔
𝐶 − 𝐷
𝐶 + 𝐷 .

Trivially, the correctness takes a value in [−1, 1], and CR(≺,≺∗) = 1 if ≺=≺∗ and
CR(≺,≺∗) = −1 if ≺ is the inversion of≺∗. Thus the correctness should be max-
imized. Moreover, to evaluate the degree of completeness of a predicted partial
order, we use the completeness deϐined as follows:

CP(≺) ≔ 𝐶 + 𝐷
#{(𝜆, 𝜆′) ∈ ℒ × ℒ ∣ 𝜆 ≺∗ 𝜆′ or 𝜆′ ≺∗ 𝜆}

.

The completeness takes a value in [0, 1] and should be maximized.

6.3.2 Results

Multiclass Classiϐication

We evaluated SELF in multiclass classiϐication. Speciϐically, we examined SELF’s
behavior with respect to the number of labeled data and the number of features;
the number of labeled data was varied from 10 to 100, and the number of fea-
tures from 2 to 10. When we ϐixed the number of labeled data, we used all features
for abalone, anneal, australian, crx, echocardiogram, heart, and hepatitis, and only
used features 1, 2, 3, 18, 20 in allbp, 1, 2,… , 6, 22, 22,… , 25 in arrhythmia, and 1, 2,
4, 5, … 11 in horse colic, since we could not ϐinish experiments in reasonable time
for such dense datasets. The above features seem to be representative for each
dataset. Otherwise if we ϐixed the number of features, we examined two cases in
which the number of labeled data for training were 10 or 100. Such small amount
of labeled data is typical in evaluation in semi-supervised learning; for example,
the numbers 10 and 100 were adopted in benchmarks in the literature¹ (Chapelle
et al., 2006, §21).

To analyze effectivity of unlabeled data in the semi-supervised manner, we
trained SELF in two ways; one is using both labeled and the remaining all unla-
beled data for training, and the other is using only labeled data for training with-
out any unlabeled data. In the following, we denote “SELF” in the former case and
“SELF (w/o)” in the latter case. All experiments were carried out in the transduc-
tive setting (Vapnik and Sterin, 1977), that is, test data coincide with the unlabeled
training data. This setting is common in empirical evaluation of semi-supervised
learning methods (Chapelle et al., 2006, §21).

¹This content is available at http://olivier.chapelle.cc/ssl-book/benchmarks.pdf.

http://olivier.chapelle.cc/ssl-book/benchmarks.pdf

6.3 EXPERIMENTS 111

For control, three learning algorithms were adopted: the decision tree-based
classiϐier, SVM with the RBF kernel, and the 𝑘 nearest neighbor algorithm (𝑘 = 1
and 5). All the above algorithms are typical for supervised learning and hence did
not use unlabeled data in training.

Figure 6.5 and Figures 6.6, 6.7 show the accuracy with respect to changes in
the number of labeled data and the number of features, respectively. In every case,
the accuracy of SELF was much better than that of SELF (w/o), and the accuracy
was getting better according as the number of labeled data increases. Moreover,
SELF’s performance is getting better with increase in the number of features. SELF
therefore can effectively use unlabeled data and features for learning.

In comparison with the tree algorithm which can treat mixed-type data di-
rectly, SELF showed better performance in all datasets in Figure 6.5. Moreover,
compared to other learning algorithms of SVM and 𝑘NN, SELF also achieved the
best performance in abalone, anneal, and horse colic. When the number of labeled
data is small (about 10 – 40), SELF outperformed other learning algorithms in all
datasets except allbp, as shown in Figures 6.5 and 6.6.

Label Ranking

We examined effectivity of SELF for label ranking. In consideration of the lack of
benchmark data for label ranking, we adopted the following procedure for label
ranking: we trained SELF using all labeled data on the respective dataset and ob-
tained the ranking for each datum, and used them as the ground truth. Cheng et al.
(2010); Hülermeier et al. (2008) who studied label ranking used the naïve Bayes
classiϐier to make the ground truth of rankings from datasets. However, the math-
ematical theory is totally different from those of SELF, hence their approach is not
appropriate to our case.

Figure 6.8 shows the results of label ranking by SELF with varying the num-
ber of labeled data, and Figures 6.9 and 6.10 show those with respect to the num-
ber of features, where the number of labeled data is 10 for Figure 6.9 and 100 for
Figure 6.10. The correctness of SELF is better than SELF (w/o) in abalone, and is
similar between them in the other datasets for all conditions. In contrast, the com-
pleteness of SELF is much higher than that of SELF (w/o) in most cases. The main
reason might be that lots of data are not classiϐied to any class in SELF (w/o).

6.3.3 Discussion

Our experiments about classiϐication (Figures 6.5, 6.6, 6.7) show that SELF has
competitive performance compared to other machine learning algorithms, where
unlabeled data can be used effectively in training. This result means that data
clustering using the closed set lattices works well for semi-supervised learning
of mixed-type data. Moreover, SELF can explicitly produce classiϐication rules like
the decision tree-based algorithm, hence SELF’s results can be easily interpreted.
Furthermore, in label ranking (Figures 6.8 – 6.10), SELF outperformed SELF (w/o)
in most cases in terms of completeness, and the performance got higher with in-
crease of the number of labeled data. Our results therefore show that unlabeled
data are also effectively used in SELF in the task of label ranking.

112 SEMI-SUPERVISED CLASSIFICATION AND RANKING

20 40 60 80 100

0.05

0.10

0.15

abalone

A
cc

ur
ac

y

20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

allbp

20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9
anneal

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

arrhythmia

A
cc

ur
ac

y

20 40 60 80 100

0.5

0.6

0.7

0.8

australian

20 40 60 80 100

0.5

0.6

0.7

0.8

crx

20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

echocardiogram

A
cc

ur
ac

y

20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

heart

Number of labeled data
20 40 60 80 100

0.3

0.4

0.5

0.6

0.7
hepatitis

Number of labeled data

20 40 60 80 100

0.45
0.50
0.55
0.60
0.65
0.70
0.75

horse_colic

A
cc

ur
ac

y

Number of labeled data

SELF
SELF (w/o)
Tree
SVM
1−NN
5−NN

Figure 6.5 | Experimental results of accuracy for ten mixed-type datasets from UCI repository with varying the
number of labeled data. We performed SELF using both labeled and unlabeled data (SELF) and using only labeled
data (SELF (w/o)), and compared them to the decision tree-based classifier (Tree), SVMwith the RBF kernel (SVM),
and the k-nearest neighbor algorithm (1-NN, 5-NN). Data showmean ± s.e.m.

6.3 EXPERIMENTS 113

2 4 6 8 10

0.04

0.06

0.08

0.10

abalone

A
cc

ur
ac

y

2 4 6 8 10

0.5

0.6

0.7

0.8

0.9

allbp

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

anneal

2 4 6 8 10

0.05

0.10

0.15

arrhythmia

A
cc

ur
ac

y

2 4 6 8 10

0.5

0.6

0.7

australian

2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

crx

2 4 6 8 10

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

echocardiogram

A
cc

ur
ac

y

2 4 6 8 10

0.4

0.5

0.6

0.7

heart

Number of features
2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

hepatitis

Number of features

2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

horse colic

A
cc

ur
ac

y

Number of features

SELF
SELF (w/o)
Tree
SVM
1−NN
5−NN

Figure 6.6 | Experimental results of accuracy for ten mixed-type datasets from UCI repository with varying the
number of features. The number of labeled datawas fixed at 10 in each experiment. Weperformed SELF using both
labeled and unlabeled data (SELF) and using only labeled data (SELF (w/o)), and compared them to the decision
tree-based classifier (Tree), SVM with the RBF kernel (SVM), and the k-nearest neighbor algorithm (1-NN, 5-NN).
Data showmean ± s.e.m.

114 SEMI-SUPERVISED CLASSIFICATION AND RANKING

2 4 6 8 10
0.08

0.10

0.12

0.14

0.16

0.18

abalone

A
cc

ur
ac

y

2 4 6 8 10

0.3
0.4
0.5
0.6
0.7
0.8
0.9

allbp

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

anneal

2 4 6 8 10

0.2

0.3

0.4

0.5

arrhythmia

A
cc

ur
ac

y

2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

0.8

australian

2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

0.8

crx

2 4 6 8 10

0.50

0.55

0.60

0.65

0.70

echocardiogram

A
cc

ur
ac

y

2 4 6 8 10

0.5

0.6

0.7

0.8

heart

Number of features
2 4 6 8 10

0.3

0.4

0.5

0.6

0.7
hepatitis

Number of features

2 4 6 8 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8
horse colic

A
cc

ur
ac

y

Number of features

SELF
SELF (w/o)
Tree
SVM
1−NN
5−NN

Figure 6.7 | Experimental results of accuracy for ten mixed-type datasets from UCI repository with varying the
number of features. The number of labeled data was fixed at 100 in each experiment. We performed SELF using
both labeled and unlabeled data (SELF) and using only labeled data (SELF (w/o)), and compared them to the de-
cision tree-based classifier (Tree), SVM with the RBF kernel (SVM), and the k-nearest neighbor algorithm (1-NN,
5-NN). Data showmean ± s.e.m.

6.3 EXPERIMENTS 115

20 40 60 80 100

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4
abalon

Co
rr

ec
tn

es
s

20 40 60 80 100

0.70

0.75

0.80

0.85

0.90

0.95

allbp

20 40 60 80 100

0.70

0.75

0.80

0.85

anneal

Co
rr

ec
tn

es
s

20 40 60 80 100

−0.6

−0.4

−0.2

0.0

0.2

0.4

arrhythmia

20 40 60 80 100

0.05
0.10
0.15
0.20
0.25
0.30
0.35

abalon

Co
m

pl
et

en
es

s

20 40 60 80 100

0.6

0.7

0.8

0.9

allbp

20 40 60 80 100

0.3
0.4
0.5
0.6
0.7
0.8
0.9

anneal

Number of labeled data

Co
m

pl
et

en
es

s

20 40 60 80 100

0.1
0.2
0.3
0.4
0.5
0.6
0.7

arrhythmia

Number of labeled data
SELF
SELF (w/o)

SELF
SELF (w/o)

Figure 6.8 | Experimental results of correctness and completeness (should be maximized) for four mixed-type
datasets from UCI repository with varying the number of labeled data. We performed SELF using both labeled and
unlabeled data (SELF) and using only labeled data (SELF (w/o)), Data showmean ± s.e.m.

116 SEMI-SUPERVISED CLASSIFICATION AND RANKING

2 4 6 8 10

−0.90

−0.85

−0.80

−0.75

−0.70

−0.65
abalone

Co
rr

ec
tn

es
s

2 4 6 8 10

−0.2
0.0
0.2
0.4
0.6
0.8

allbp

2 4 6 8 10

−0.2

0.0

0.2

0.4

0.6

anneal

Co
rr

ec
tn

es
s

2 4 6 8 10

−0.7

−0.6

−0.5

−0.4

arrhythmia

2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

0.30

abalone

Co
m

pl
et

en
es

s

2 4 6 8 10
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

allbp

2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

0.8

anneal

Number of features

Co
m

pl
et

en
es

s

2 4 6 8 10

0.1

0.2

0.3

0.4

arrhythmia

Number of features
SELF
SELF (w/o)

SELF
SELF (w/o)

Figure 6.9 | Experimental results of correctness and completeness (should bemaximized) formixed-type datasets
from UCI repository with varying the number of features. The number of labeled data was fixed at 10 in each
experiment. We performed SELF using both labeled and unlabeled data (SELF) and using only labeled data (SELF
(w/o)), Data showmean ± s.e.m.

6.3 EXPERIMENTS 117

2 4 6 8 10

−0.8

−0.7

−0.6

−0.5

−0.4

abalone

Co
rr

ec
tn

es
s

2 4 6 8 10

−1.0

−0.5

0.0

0.5

1.0
allbp

2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

anneal

Co
rr

ec
tn

es
s

2 4 6 8 10

0.1

0.2

0.3

0.4

arrhythmia

2 4 6 8 10
0.05

0.10

0.15

0.20

0.25

0.30

0.35

abalone

Co
m

pl
et

en
es

s

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0
allbp

2 4 6 8 10

0.70

0.75

0.80

0.85

0.90

anneal

Number of features

Co
m

pl
et

en
es

s

2 4 6 8 10

0.40
0.45
0.50
0.55
0.60
0.65
0.70

arrhythmia

Number of features

SELF
SELF (w/o)

Figure 6.10 | Experimental results of correctness and completeness (should be maximized) for mixed-type data-
sets from UCI repository with varying the number of features. The number of labeled data was fixed at 100 in each
experiment. We performed SELF using both labeled and unlabeled data (SELF) and using only labeled data (SELF
(w/o)), Data showmean ± s.e.m.

118 SEMI-SUPERVISED CLASSIFICATION AND RANKING

6.4 Summary

We have proposed a novel semi-supervised learning algorithm, called SELF, for
mixed-type data including both discrete and continuous variables, and experimen-
tally showed its competitive performance. The key strategy is data clustering with
closed set lattices using FCA, and the present study shows the effectivity of the
lattices in semi-supervised learning. To our best knowledge, this approach is the
ϐirst direct semi-supervised method for mixed-type data, and also the ϐirst one to
exploit closed set lattices in semi-supervised learning. Moreover, we can directly
treat missing values on SELF, meaning that SELF can be used for various practical
datasets. To date, many semi-supervised learning methods use data distribution
and probabilities, whereas SELF uses only the algebraic structure of data without
any background knowledge. Our results with lattice-based data analysis provide
new insight to machine learning and knowledge discovery.

There are two future works; one is analysis of SELF from the FCA point of view.
Reϐinement of discretization of continuous variables must have some connection
with reduction of a context (Ganter and Wille, 1998) since if we extend a context
by reϐining real-valued variables, the original attributes are removed by reduction.
Moreover, ambiguity of data, such as intervals including truth values, might be
treated using such techniques in FCA. Thereby analysis of mathematical connec-
tion between them is a future work. The other is theoretical analysis in the compu-
tational learning theory context. de Brecht and Yamamoto (2010) have proposed
Alexandrov concept space for learning from positive data. Our proposed method
might be an instance of the study, since the concept lattice is similar to the Alexan-
drov space. Thus theoretical analysis of our framework is also a future work.

7

LIGAND FINDING BY
MULTI-LABEL CLASSIFICATION

RĊĈĊĕęĔėĘ ĆėĊ ĕėĔęĊĎē ĒĔđĊĈĚđĊĘ receptorlocated at the surface of cells, which receive
chemical signals from outside of the cells. Since receptors have crucial roles

for signal processing in organisms, to date, enormous studies have been devoted
to investigate their biochemical functions. The key approach in an experiment is to
use receptor speciϐicity with respect to a ligand, which triggers a cellular response ligand
by binding to a receptor, for controlling the receptor actions (Figure 7.1). However,
ϐinding new convenient ligands is difϐicult; choosing ligand candidates relies on
expert knowledge of biologists and conducting experiments to test whether or not
candidates work in vivo or in vitro costs high in terms of time and money. Thus an
in silico approach is required for helping biologists.

In this chapter, we adopt a machine learning, or knowledge discovery and data
mining, approach to ϐind candidates of ligands. Speciϐically, we formulate the prob-
lem of ligand ϐinding as multi-label classiϔication recently discussed in the ϐield of multi-label classification
preference learning (Fürnkranz and Hüllermeier, 2010), where each training da- preference learning
tum used for learning is associated with not a single class label but a set of possible
labels. Here, for each ligand, receptors to which it binds correspond to class labels
of the ligand, and our goal is to predict labels (i.e., receptors) of ligands from data-
bases of receptors and ligands. A ligand can often bind to more than two recep-
tors; this is why our problem is not traditional single-label but multi-label classi-
ϐication. Moreover, we try to predict labels in a semi-supervised manner (Chapelle semi-supervised learning
et al., 2006; Zhu and Goldberg, 2009). Semi-supervised learning is a special form
of classiϐication, where a learning algorithm uses both labeled and unlabeled data
in training. Commonly, only few labeled data are assumed to be available since
the labeling task costs high in a real situation. Semi-supervised learning therefore
ϐits to our goal since, in our problem, only few ligands for each receptor have been
discovered yet lots of ligands for other receptors are available.

Formally, the problem of semi-supervised multi-label classiϐication is stated as
follows: Given a sequence 𝑋 = 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ , where each 𝑥௜ is a tuple, or feature tuple
vector, and a domain of labels ℒ. Each tuple 𝑥௜ is associated with a set of labels feature vector
𝐿௜ ⊆ ℒ. Since we consider semi-supervised learning, 𝐿௜ = ∅ is allowed. The goal
is, for any tuple (test datum) 𝑦, to predict the preference of labels with respect to preference

120 LIGAND FINDING BY MULTI-LABEL CLASSIFICATION

Figure 7.1 | A ligand-gated ion chan-
nel, which is a typical receptor.

Ligand
binds

Channel opensIons

Cell Cell
Receptor
(ion channel)

𝑦, and we can decide whether or not 𝑦 is associated with a label 𝜆 for each 𝜆 ∈ ℒ.
Information about receptors and ligands is donated to various databases, such

as KEGG¹, and in this chapter we use the IUPHAR database (Sharman et al., 2011)².
In the database, every ligand is characterized by seven features as follows: hy-
drogen bond acceptors, hydrogen bond donors, rotatable bonds, topological polar
surface area, molecular weight, XLogP, and number of Lipinski’s rules broken. We
abbreviate them in this chapter HBA, HBD, RB, TPS, MW, XLogP, and NLR, respec-
tively. Here, TPS, MW, and XLogP take continuous (real-valued) values while the
others, HBA, HBD, RB, and NLR, take discrete values. Thus to design an effective
classiϐier for the IUPHAR database, we have to appropriately treatmixed-type datamixed-type data
including both discrete and continuous variables.

Recently, semi-supervised learning is one of active research ϐields in machine
learning and knowledge discovery, and now various semi-supervised learning al-
gorithms have already been developed (Chapelle et al., 2006; Zhu and Goldberg,
2009). However, most of them are designed for real-valued variables (not discrete
variables) and cannot be applied to mixed-type data directly and, moreover, they
do not treat multi-label classiϐication considered in this chapter. Therefore, in this
chapter, we construct a new learning algorithm, called LIFT (Ligand FInding via
Formal ConcepT Analysis), which is designed for semi-supervised multi-label clas-
siϐication of mixed-type data and hence it solves the ligand ϐinding problem from
the IUPHAR database. The basic strategy of LIFT is similar to the learning method
SELF presented in the previous chapter, which directly handles mixed-type data
in the semi-supervised manner. Since SELF cannot treat multi-label classiϐication,
we redesign the essential algorithm of SELF to ϐit to multi-label classiϐication.

LIFT uses “label propagation”, or cluster-and-label, which is a typical approach
in semi-supervised learning (Dara et al., 2002; Demiriz et al., 1999). This means
that it ϐirst makes clusters without label information, followed by giving prefer-
ences of class labels for each cluster. In LIFT, the clustering process is achieved
by Formal Concept Analysis (FCA) (Davey and Priestley, 2002; Ganter and Wille,Formal Concept Analysis (FCA)
1998), which is a mathematical data analysis technique originally proposed by
Wille (1982). One of successful applications of FCA in data mining is for frequent
pattern and association rule mining proposed by Pasquier et al. (1999), where
closed patterns (itemsets) obtained by FCA is used as condensed “lossless” rep-
resentations of original patterns. Using FCA, informally, we can introduce a lattice
structure, called a concept lattice or a closed set lattice, which is a partially orderedconcept lattice

closed set lattice set of data clusters with respect to subset inclusion, into original data. Many stud-
ies used FCA for machine learning and knowledge discovery, such as classiϐication

¹http://www.genome.jp/kegg/
²http://www.iuphar-db.org/index.jsp

7.1 THE LIFT ALGORITHM 121

(Ganter and Kuznetsov, 2003), clustering (Zhang et al., 2008), and bioinformatics
(Blinova et al., 2003; Kaytoue et al., 2011b; Kuznetsov and Samokhin, 2005), but
ligand ϐinding presented in this chapter is a novel application of FCA.

To date, no study treats machine learning for ligand ϐinding in the (multi-class)
classiϐication point of view. Recently, to the best of our knowledge, there exists
only one related study by Ballester and Mitchell (2010), which investigated a ma-
chine learning approach to predict the afϔinity of ligands, the strength of docking. affinity
Another approach was performed by King et al. (1996) for modeling structure-
activity relationships (SAR), which can be applied to ligand ϐinding. However, their
goal is to understand the chemical model by describing relations using inductive
logic programming (ILP), thus their approach is different from ours. On the other
hand, most in silico studies about receptors and ligands tried to construct a pre-
dictive model using domain-speciϐic knowledge, such as the potential energy of a
complex, the two-dimensional co-ordinates, and the free energy of binding (Huang
et al., 2006; Moitessier et al., 2008), and lots of scoring methods were proposed;
e.g., AMBER (Cornell et al., 1995), AutoDock (Huey et al., 2007), and DrugScore
(Gohlke et al., 2000). However, to use such a method, some domain-speciϐic back-
ground knowledge is required and results depend on them. In contrast, our ap-
proach relies on only databases, thereby the user does not need any background
knowledge and can easily use and understand results.

This chapter is organized as follows: Section 7.1 presents the LIFT algorithm.
Section 7.2 gives experimental results with methodologies and discussion. Finally
we summarize our results and discuss our future works in Section 7.3.

7.1 The LIFT Algorithm

We present the algorithm, LIFT (LIgand Finding via Formal ConcepT Analysis), in
this section. LIFT uses exactly the same algorithms for lattice construction from a
given database. Namely, Algorithms 6.1 and 6.2 are used for data preprocessing,
and FCA is used for clustering (see Section 6.2.1 and 6.2.2 for detail). In the follow-
ing, we write the concept lattice (the set of concepts) 𝔅(𝐺,𝑀, 𝐼) generated from a
given table 𝜏 at discretization level 𝑘 by 𝔅௞(𝜏).
Example 7.1
Given a table 𝜏 = (𝐻, 𝑋), where 𝐻 = {HBD, TPS,MW} and 𝑋 = 𝑥ଵ, 𝑥ଶ, 𝑥ଷ such that

(𝑥ଵ(HBD), 𝑥ଵ(TPS), 𝑥ଵ(MW)) = (0, 0.61, 0.98),
(𝑥ଶ(HBD), 𝑥ଶ(TPS), 𝑥ଶ(MW)) = (0, 0.44, 0.74),
(𝑥ଷ(HBD), 𝑥ଷ(TPS), 𝑥ଷ(MW)) = (1, 0.72, 0.34),

which is visualized as follows:

𝐻 HBD TPS MW

𝑋
𝑥ଵ 0 0.61 0.98
𝑥ଶ 0 0.44 0.74
𝑥ଷ 1 0.72 0.34

122 LIGAND FINDING BY MULTI-LABEL CLASSIFICATION

Figure 7.2 | The concept lattice con-
structed from the context in Exam-
ple 7.1. Feature names HBD, TPS, and
MWare abbreviated as H, T, andM, re-
spectively.

x1, x2, x3
∅

H.0, M.2 T.2

H.0, T.1, M.2 H.0, T.2, M.2 H.1, T.2, M.1

H.0, H.1, T.1, T.2, M.1, M.2

x1 x3x2

x1, x2 x1, x3

∅

Let discretization level 𝑘 = 1. For each feature, we have the context as follows:

𝑀ୌ୆ୈ = {HBD.0, HBD.1},
𝐼ୌ୆ୈ = {(𝑥ଵ, HBD.0), (𝑥ଶ, HBD.0), (𝑥ଷ, HBD.1)},
𝑀୘୔ୗ = {TPS.1, TPS.2},
𝐼୘୔ୗ = {(𝑥ଵ, TPS.2), (𝑥ଶ, TPS.1), (𝑥ଷ, TPS.2)},
𝑀୑୛ = {MW.1,MW.2},
𝐼୑୛ = {(𝑥ଵ, MW.2), (𝑥ଶ, MW.2), (𝑥ଷ, MW.1)}.

Thus we have the context (𝐺,𝑀, 𝐼) such that

𝐺 = {𝑥ଵ, 𝑥ଶ, 𝑥ଷ},
𝑀 = 𝑀ୌ୆ୈ ∪𝑀୘୔ୗ ∪𝑀୑୛,
𝐼 = 𝐼ୌ୆ୈ ∪ 𝐼୘୔ୗ ∪ 𝐼୑୛,

which is visualized as a cross-table in the following.

HBD.0 HBD.1 TPS.1 TPS.2 MW.1 MW.2
𝑥ଵ × × ×
𝑥ଶ × × ×
𝑥ଷ × × ×

The set 𝔅௞(𝜏) consists of seven concepts in total:

(∅, {HBD.0, HBD.1, TPS.1, TPS.2,MW.1,MW.2}),
({𝑥ଵ}, {HBD.0, TPS.2,MW.2}), ({𝑥ଶ}, {HBD.0, TPS.1,MW.2}),
({𝑥ଷ}, {HBD.1, TPS.2,MW.1}), ({𝑥ଵ, 𝑥ଶ}, {HBD.0,MW.2}),
({𝑥ଵ, 𝑥ଷ}, {TPS.2}), 𝑎𝑛𝑑({𝑥ଵ, 𝑥ଶ, 𝑥ଷ}, ∅).

We show the corresponding concept lattice in Figure 7.2.

Example 7.2
Let us consider a table 𝜏 = (𝐻, 𝑋) such that 𝐻 = {TPS, MW, XLogP} and 𝑋 =

7.1 THE LIFT ALGORITHM 123

T.1
x1, x2, x3

T.1, X.2 T.1, M.1

T.1, M.2, X.2

T.1, T.2, M.1, M.2, X.1, X.2

T.1, M.1, X.2 T.1, M.1, X.1

x2, x3

x3 x2 x1

x1, x2

∅
Figure 7.3 | The concept lattice from
the context in Example 7.2with its ge-
ometric interpretation.

𝑥ଵ, 𝑥ଶ, 𝑥ଷ such that

(𝑥ଵ(TPS), 𝑥ଵ(MW), 𝑥ଵ(XLogP)) = (0.23, 0.12, 0.18),
(𝑥ଶ(TPS), 𝑥ଶ(MW), 𝑥ଶ(XLogP)) = (0.35, 0.03, 0.74),
(𝑥ଷ(TPS), 𝑥ଷ(MW), 𝑥ଷ(XLogP)) = (0.41, 0.79, 0.91),

which is represented as follows:

𝐻 TPS MW XLogP

𝑋
𝑥ଵ 0.23 0.12 0.18
𝑥ଶ 0.35 0.03 0.74
𝑥ଷ 0.41 0.79 0.91

The concept lattice (Figure 7.3) constructed from the context:

T.1 T.2 M.1 M.2 X.1 X.2
𝑥ଵ × × ×
𝑥ଶ × × ×
𝑥ଷ × × ×

corresponds to a hierarchy of cubes in three-dimensional Euclidean space.

7.1.1 Multi-label Classiϐication and Ranking

Here we discuss classiϐication on concept lattices using label information. Our
strategy is to designpreference, a kind ofweight, for each label of a given test datum preference
(unlabeled tuple) 𝑦 based on concepts produced by FCA, and achieve multi-label
classiϐication based on the preference. Moreover, we show that label ranking can
be performed using the preference.

124 LIGAND FINDING BY MULTI-LABEL CLASSIFICATION

First LIFT translates a tuple 𝑦 of a table 𝜐 = (𝐻, 𝑦) into a context with just one
object using Algorithms 6.1 and 6.2; i.e., 𝐺 is the singleton {𝑦}. We always assume
that the header 𝐻 is exactly the same as that of a table 𝜏 = (𝐻, 𝑋) of training data.

The key idea is, for each concept (𝐴, 𝐵) ∈ 𝔅௞(𝜏) obtained from a table 𝜏 of
training data, to treat the set of attributes𝐵 as a classiϔication rule. For an unlabeledclassification rule
tuple 𝑦, we check whether or not the object 𝑦 has the all attributes of the concept
(𝐴, 𝐵), since this condition means that the object 𝑦 has the same properties of the
objects 𝐴, meaning that 𝑦 is classiϐied to the same class of objects in 𝐴. We call this
property𝑚-consistency which is formally deϐined as follows:m-consistency

Deϐinition 7.3
For a context ({𝑦},𝑀, 𝐼) and a concept (𝐴, 𝐵), the object 𝑦 is 𝑚-consistent

m-consistent
with

(𝐴, 𝐵) if both conditions

𝐵 ⊆ { 𝑚 ∈ 𝑀 ห (𝑦,𝑚) ∈ 𝐼 } and 𝐵 ≠ ∅

hold.
The notion of 𝑚-consistency has the monotonicity with respect to the order ≤
on a concept lattice. If an object 𝑦 is 𝑚-consistent with a concept (𝐴, 𝐵), it is 𝑚-
consistent with any concept (𝐶, 𝐷) such that (𝐴, 𝐵) ≤ (𝐶, 𝐷), and if an object 𝑦
is not 𝑚-consistent with a concept (𝐴, 𝐵), it is not 𝑚-consistent with any concept
(𝐶, 𝐷) such that (𝐶, 𝐷) ≤ (𝐴, 𝐵). Thus, for the set of concepts𝔅௞(𝜏), if we deϐine

𝒞(𝑦) ≔ ቄ (𝐴, 𝐵) ∈ 𝔅௞(𝜏) ቚ 𝑦 is 𝑚-consistent with (𝐴, 𝐵) ቅ ,

there always exist ϐinite concepts (𝐴ଵ, 𝐵ଵ), (𝐴ଶ, 𝐵ଶ), … , (𝐴௟ , 𝐵௟) such that

ራ
௜∈{ଵ,ଶ,…,௟}

↑(𝐴௜ , 𝐵௜) = 𝒞(𝑦),

where
↑(𝐴, 𝐵) = ቄ (𝐶, 𝐷) ∈ 𝔅௞(𝜏) ቚ (𝐴, 𝐵) ≤ (𝐶, 𝐷) ቅ .

Here we give the formal deϐinition of the 𝑚-preference of a label. We denote
the set of labels associated with a tuple (object) 𝑥 by Λ(𝑥). Notice that Λ(𝑥) was a
single label in the previous chapter since we considered single-class classiϐication,
but here it is a set of labels to take multi-class into account. Thereby, for a set of
tuples (objects) 𝐴, Λ(𝐴) denotes the set⋃௫∈஺ Λ(𝑥). LIFT allows unlabeled data for
training, hence Λ(𝑥) could be empty, meaning that the object 𝑥 is unlabeled. This
is why LIFT is a semi-supervised learning algorithm.

Deϐinition 7.4: m-preference at discretization level k
Given tables 𝜏 = (𝐻, 𝑋) and 𝜐 = (𝐻, 𝑦) with |𝜐| = 1. For each discretization
level 𝑘 and each label 𝜆 ∈ ℒ, we deϐine the 𝑚-preference of 𝜆 at discretization
level 𝑘

m-preference at discretization level k
with respect to the tuple 𝑦 by

mPref௞௬(𝜆 ∣𝜏) ≔෍ቊ #Λ(𝐴)ିଵ ቤ 𝑦 is 𝑚-consistent with (𝐴, 𝐵) ∈ 𝔅௞(𝜏)
such that 𝜆 ∈ Λ(𝐴) ቋ

where #Λ(𝐴) denotes the number of elements in Λ(𝐴), and we assume #Λ(𝐴)ିଵ
= 0 if #Λ(𝐴) = 0 for simplicity.

7.1 THE LIFT ALGORITHM 125

We do not take the size #𝐴 of the extent 𝐴 into account, since the distribution of
training data with respect to labels is often biased, especially in biological data.
Example 7.5
Let 𝜏 = (𝐻, 𝑋) be a table in Example 7.2 (see Figure 7.3) and tables 𝜐 = (𝐻, 𝑦) and
𝜎 = (𝐻, 𝑧) be

(𝑦(TPS), 𝑦(MW), 𝑦(XLogP)) = (0.12, 0.41, 0.31),
(𝑧(TPS), 𝑧(MW), 𝑧(XLogP)) = (0.31, 0.22, 0.89).

Assume that Λ(𝑥ଵ) = {A}, Λ(𝑥ଶ) = {B}, and Λ(𝑥ଷ) = {C} in 𝑋. Binary relations 𝐼జ
and 𝐼ఙ at discretization level 1 for objects 𝑦 and 𝑧 are

𝐼జ = {(𝑦, TPS.1), (𝑦,MW.1), (𝑦, XLogP.1)},
𝐼ఙ = {(𝑧, TPS.1), (𝑧,MW.1), (𝑧, XLogP.2)}.

The object 𝑦 is 𝑚-consistent with three concepts ({𝑥ଵ, 𝑥ଶ, 𝑥ଷ}, {TPS.1}), ({𝑥ଵ, 𝑥ଶ},
{TPS.1, MW.1}), and ({𝑥ଵ}, {TPS.1, MW.1, XLogP.1}), and 𝑧 is 𝑚-consistent with
four concepts ({𝑥ଵ, 𝑥ଶ, 𝑥ଷ}, {TPS.1}), ({𝑥ଵ, 𝑥ଶ}, {TPS.1, MW.1}), ({𝑥ଶ, 𝑥ଷ}, {TPS.1,
XLogP.2}), and ({𝑥ଶ}, {TPS.1, MW.1, XLogP.2}). Thus we have the𝑚-preference

mPrefଵ௬(A∣𝜏) =
1
3 + 1

2 + 1 = 1.83, mPrefଵ௬(B∣𝜏) =
1
3 + 1

2 = 0.83,

mPrefଵ௬(C∣𝜏) =
1
3 = 0.33,

mPrefଵ௭(A∣𝜏) =
1
3 + 1

2 = 0.83, mPrefଵ௭(B∣𝜏) =
1
3 + 1

2 + 1
2 + 1 = 2.33,

mPrefଵ௭(C∣𝜏) =
1
3 + 1

2 = 0.83.

These results of 𝑚-preferences reϐlect the similarity between data, since 𝑦 and 𝑧
are most similar to the ϐirst and second tuples of 𝑋, respectively.

It is easy to achieve multi-class classiϐication from the 𝑚-preference at some
ϐixed discretization level. However, this 𝑚-preference would not be enough to ex-
ploit information from obtained data. We show a simple representative case in the
following, which shows the anti-monotonicity of the notion of𝑚-consistency with anti-monotonicity
respect to discretization level.
Example 7.6
Let 𝜏 = (𝐻, 𝑋) be a table such that 𝐻 = {HBD, TPS} and 𝑋 = 𝑥ଵ, 𝑥ଶ, where

(𝑥ଵ(HBD), 𝑥ଵ(TPS)) = (0, 0.56), Λ(𝑥ଵ) = {A}
(𝑥ଶ(HBD), 𝑥ଶ(TPS)) = (0, 0.91), Λ(𝑥ଶ) = {B}

and 𝜐 = (𝐻, 𝑦) be a table such that
(𝑦(HBD), 𝑦(TPS)) = (0, 0.11),

which is shown as follows:
𝐻 HBD TPS

𝑋 𝑥ଵ 0 0.56
𝑥ଶ 0 0.91

𝑦 0 0.11

Label
A
B

126 LIGAND FINDING BY MULTI-LABEL CLASSIFICATION

At discretization level 1, we have the context

H.0 T.1 T.2
𝑥ଵ × ×
𝑥ଶ × ×
𝑦 × ×

and there are two concepts

({𝑥ଵ, 𝑥ଶ}, {HBD.0, TPS.2}), (∅, {HBD.0, TSP.1, TPS.2}).

The object 𝑦 is not 𝑚-consistent with any concept, hence

mPrefଵ௬(A∣𝜏) = 0, mPrefଵ௬(B∣𝜏) = 0.

However, at discretization level 2 with the following context,

H.0 T.1 T.2 T.3 T.4
𝑥ଵ × ×
𝑥ଶ × ×
𝑦 × ×

there are four concepts

({𝑥ଵ, 𝑥ଶ}, {HBD.0}), ({𝑥ଵ}, {HBD.0, TPS.3}),
({𝑥ଶ}, {HBD.0, TPS.4}), (∅, {HBD.0, TSP.1, TPS.2}),

and 𝑦 is 𝑚-consistent with the concept ({𝑥ଵ, 𝑥ଶ}, {HBD.0}), thus

mPrefଶ௬(A∣𝜏) = 0.5, mPrefଶ௬(B∣𝜏) = 0.5.

Therefore 𝑦 can be classiϐied to both classes A and B.
Ideally, every discretization levels should be taken into account to obtain the

𝑚-preference of labels. One of straightforward ways is to obtain the𝑚-preference
of a label by summing up 𝑚-preferences for each discretization level. However, if
we deϐine the 𝑚-preference by

mPref௬(𝜆 ∣𝜏) ≔෍
௞ஹଵ

mPref௞௬(𝜆 ∣𝜏),

this𝑚-preference goes to inϐinity in many cases. We therefore introduce the max-
imum level 𝑘୫ୟ୶ of discretization as a parameter.

Deϐinition 7.7: m-preference
Given tables 𝜏 and 𝜐, where |𝜐| = 1, and a natural number 𝑘୫ୟ୶. For each label
𝜆 ∈ ℒ, we deϐine the 𝑚-preference

m-preference
of 𝜆 by

mPref௬(𝜆 ∣𝜏) ≔
௞ౣ౗౮

෍
௞ୀଵ

mPref௞௬(𝜆 ∣𝜏)

for a tuple 𝑦.

7.1 THE LIFT ALGORITHM 127

Algorithm 7.1: LIFT algorithm

Input: Tables 𝜏 = (𝐻, 𝑋) and 𝜐 = (𝐻, 𝑦), and maximum level 𝑘୫ୟ୶
Output: 𝑚-preferencemPref௬ for each label 𝜆 ∈ ℒ

function LIFT(𝜏, 𝜐, 𝑘୫ୟ୶)
1: 𝑘 ← 1 // 𝑘 is discretization level
2: for each label 𝜆 ∈ ℒ
3: mPref௬(𝜆 ∣𝜏) ← 0 // initialization
4: end for
5: return LEARNING(𝜏, 𝜐, 𝑘, 𝑘୫ୟ୶)

function LEARNING(𝜏, 𝜐, 𝑘, 𝑘୫ୟ୶)
1: make a concept lattice 𝔅௞(𝜏) from 𝜏 using Algorithms 6.1 and 6.2
2: for each label 𝜆 ∈ ℒ
3: compute the 𝑚-preferencemPref௞௬(𝜆 ∣𝑋) at discretization level 𝑘
4: mPref௬(𝜆 ∣𝑋) ←mPref௬(𝜆 ∣𝑋) + mPref௞௬(𝜆 ∣𝑋)
5: end for
6: if 𝑘 = 𝑘୫ୟ୶ then
7: return (mPref௬(𝜆 ∣𝜏))ఒ∈ℒ
8: else
9: return LEARNING(𝜏, 𝜐, 𝑘 + 1, 𝑘୫ୟ୶)

10: end if

We abbreviate “∣𝜏” of the expressionmPref௬(𝜆 ∣𝜏) if it is understood from context.
We give the LIFT algorithm in Algorithm 7.1, which calculates the 𝑚-preference
for each label.
Example 7.8
Let us consider a table 𝜏 = (𝐻, 𝑋)with𝐻 = {HBD, RB, TPS, MW}, where labels are
associated with each tuple, and a table 𝜐 = (𝐻, 𝑦) with an unlabeled tuple 𝑦, as
shown in the following.

𝐻 HBD TPS MW

𝑋
𝑥ଵ 0 0.98 0.88
𝑥ଶ 1 0.41 0.48
𝑥ଷ 2 0.12 0.71

𝑦 0 0.77 0.79

Labels
A
B C
A C

Assume that 𝑘୫ୟ୶ = 2. At discretization level 1 with the context

H.0 H.1 H.2 T.1 T.2 M.1 M.2
𝑥ଵ × × ×
𝑥ଶ × × ×
𝑥ଷ × × ×
𝑦 × × ×

128 LIGAND FINDING BY MULTI-LABEL CLASSIFICATION

Figure 7.4 | Concept lattices con-
structed from contexts 𝔅1(τ) (left)
and𝔅2(τ) (right) in Example 7.8. The
tuple y is m-consistent with concepts
denoted by black dots.

x1, x2, x3
∅

M.2 T.1

H.0, T.2, M.2 H.2, T.1, M.2 H.1, T.1, M.1

H.0, H.1, H.2, T.1, T.2, M.1, M.2

x3 x2x1

x1, x3 x2, x3

∅

x1, x2, x3
∅

H.0, T.4, M.4 H.2, T.1, M.3

∅

x1 x3

H.0,H.1,H.2,T.1,T.2,T.3,
T.4,M.1,M.2,M.3,M.4

H.1, T.2, M.2

x2

we have

mPrefଵ௬(A) = 1.5, mPrefଵ௬(B) = 0, and mPrefଵ௬(C) = 0.5,

since 𝑦 is 𝑚-consistent with two concepts

(𝐴ଵ, 𝐵ଵ) = ({𝑥ଵ, 𝑥ଷ}, {MW.2}) and
(𝐴ଶ, 𝐵ଶ) = ({𝑥ଵ}, {HBD.0, TPS.2,MW.2}),

where Λ(𝐴ଵ) = {A, C} and Λ(𝐴ଶ) = {A} (see Figure 7.4). Remember that we al-
ways ignore the concept whose attribute is empty. At discretization level 2 with
the context

H.0 H.1 H.2 T.1 T.2 T.3 T.4 M.1 M.2 M.3 M.4
𝑥ଵ × × ×
𝑥ଶ × × ×
𝑥ଷ × × ×
𝑦 × × ×

we have

mPrefଶ௬(A) = 1,mPrefଶ௬(𝐵) = 0, and mPrefଶ௬(C) = 0,

since𝑦 is𝑚-consistent with only one concept ({𝑥ଵ}, {HBD.0, TPS.4,MW.4}). Finally
we have

mPref௬(A) = 2.5,mPref௬(B) = 0, and mPref௬(C) = 0.5

for each label.
From the𝑚-preference obtained by LIFT, multi-label classiϐication can be per-

formed, that is, an unlabeled tuple 𝑦 is associated with a set of labels 𝐿 ⊆ ℒ such
that 𝐿 = {𝜆 ∈ ℒ ∣ mPref௬(𝜆) ≠ 0}. Furthermore, a partial order ⪯ of labels
can be derived from 𝑚-preferences, where 𝜆௜ ⪯ 𝜆௝ (𝜆௝ is preferable than 𝜆௜) if
mPref௬(𝜆௜) ≤ mPref௬(𝜆௝). Thus we can also achieve the label ranking problem
using the 𝑚-preference.

The time complexity of LIFT is 𝑂(𝑛𝑑)+𝑂(Δଷ𝑁), which is same as that of SELF.

7.2 EXPERIMENTS 129

Example 7.9
For training and test data given in Example 7.8, labels A and C are associated with
𝑦 since both mPref௬(A) and mPref௬(C) are larger then 0. Moreover, we have the
order B ≤ C ≤ A of label ranking for the tuple 𝑦.

7.2 Experiments

We evaluate the LIFT algorithm using real data of ligands and receptors compared
to SVM and the decision tree-based algorithm. We also experimentally measure
the effectiveness of unlabeled data for training in semi-supervised learning by LIFT.

7.2.1 Methods

Environment

LIFT was implemented inR and all experiments were performed inRversion 2.12.2
(R Development Core Team, 2011). LIFT uses LCM distributed by Uno et al. (2005)
to construct a concept lattice 𝔅௞(𝜏), which was implemented in C. In all experi-
ments, we used Mac OS X version 10.6.5 with two 2.26-GHz Quad-Core Intel Xeon
CPUs and 12 GB of memory.

Databases

We collected the entire 1,782 ligand data in the IUPHAR database (Sharman et al.,
2011)³. In the database, each ligand is characterized by seven features: HBA, HBD,
RB, TPS, MW, XLogP, and NLR as described in introduction of this chapter. Re-
ceptors, which corresponds to class labels, are classiϐied into families, such as 5-
Hydroxytryptamine receptors and Acetylcholine receptors, hence we picked up
the eleven largest families from the database and used respective families as data-
sets for each training. Statistics of receptor families is shown in Table 7.1. In
semi-supervised learning of LIFT, entire ligands except the focusing receptor fam-
ily were used as unlabeled training data.

Learning Algorithms

To measure the effectiveness of unlabeled ligand data, we used LIFT in two cases:
only labeled data were used in training in the ϐirst case (denoted by LIFT (w/o) in
Figure 7.5), and all ligands except test data were used as unlabeled training data in
the second case. The maximum level 𝑘୫ୟ୶ was set at 5 throughout all experiments.
As a control method for evaluation of LIFT, we adopted SVM with the RBF kernel
and the decision tree-based method implemented in R (Ripley, 1996), since the
tree method is a typical learning algorithm which can be applied to mixed-type
data containing both discrete and continuous variables. We used the function ksvm
in the kernlab package for SVM (Karatzoglou et al., 2004), where all discrete values
are treated as continuous. Note that these control methods are typical supervised
learning methods and cannot use unlabeled data in the learning phase. Moreover,

³http://www.iuphar-db.org/index.jsp

130 LIGAND FINDING BY MULTI-LABEL CLASSIFICATION

Table 7.1 | Families of receptors. The
number of ligands and receptors cor-
respond to the data size and the num-
ber of class labels, respectively.

Family name # Ligands # Receptors
5-Hydroxytryptamine receptors 286 53
Acetylcholine receptors 100 68
Adenosine receptors 162 40
Adrenoceptors 111 35
Dopamine receptors 69 40
Histamine receptors 120 37
Neuropeptide Y receptors 76 34
Metabotropic glutamate receptors 73 9
Transient receptor potential channels 78 58
Voltage-gated potassium channels 61 71
Ionotropic glutamate receptors 81 14

since they are algorithms designed for single-label classiϐication, we just used the
ϐirst label for each training datum.

Evaluation

Let 𝜐 = (𝐻, 𝑌) be a test table with 𝑌 = 𝑦ଵ, 𝑦ଶ, … , 𝑦௡ and the domain of labels ℒ be
{𝜆ଵ, 𝜆ଶ, … , 𝜆௟}. Assume that we have the 𝑚-preference {mPref௬(𝜆௜ ∣ 𝜏) ∣ 1 ≤ 𝑖 ≤ 𝑙}
for each label 𝜆௜ ∈ ℒ by LIFT, where

mPref௬(𝜆௣భ ∣𝜏) ≥ mPref௬(𝜆௣మ ∣𝜏) ≥ mPref௬(𝜆௣య ∣𝜏) ≥ … ≥ mPref௬(𝜆௣೗ ∣𝜏).

for each tuple 𝑦 ∈ set(𝑌). In LIFT, we deϐine the accuracy acc(𝜐) by

acc(𝜐) ≔
∑௡
௜ୀଵ # ቄ 𝜆௝ ∈ Λ(𝑦௜) ቚ 𝑗 ∈ {𝑝ଵ, 𝑝ଶ, … , 𝑝#ஃ(௬೔)} ቅ

∑௡
௜ୀଵ #Λ(𝑦௜)

,

which takes values in [0, 1] and to be maximized. This means that when 𝑦 is asso-
ciated with 𝑞 labels, we check whether or not each label is in top-𝑞 labels deter-
mined by the𝑚-preference. Notice that we do not take labels 𝜆௣#౻(೤)శభ , … , 𝜆௣೗ into
account to obtain the accuracy since the database has only positive information
and 𝜆 ∉ Λ(𝑦) does not means that the ligand 𝑦 does not bind to the receptor 𝜆.

For the decision-tree based method and SVM, the accuracy is obtained by

acc(𝜐) ≔
#{𝑦௜ ∣ 1 ≤ 𝑖 ≤ 𝑛, 𝑓(𝑦௜) ∈ Λ(𝑦௜)}

𝑛 ,

where 𝑓(𝑦௜) is the output for the tuple 𝑦௜ by respective learning algorithms.
Mean and s.e.m. (standard error of the mean) of accuracy was obtained for

each dataset (receptor family) by 10-fold crossvalidation.

7.2.2 Results and Discussion

Results are shown in Figure 7.5. These results clearly show that LIFT is more ef-
fective than the typical classiϐication algorithms of SVM and the tree algorithm for
ligand ϐinding. Accuracy obtained by LIFT is signiϐicantly higher than that by SVM
and the tree algorithm in eight cases out of eleven cases (checked by paired 𝑡-test,

7.2 EXPERIMENTS 131

LIFT (w/o)
LIFT
Tree
SVM

* : p < 0.05

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

5-Hydroxytrypta-
mine receptors

Acetylcholine
receptors

Adenosine
receptors

Adrenoceptors

Dopamine
receptors

Histamine
receptors

Neuropeptide Y
receptors

Metabotropic
glutamate receptors

Transient Receptor
Potential Channels

Voltage-Gated
Potassium Channels

Ionotropic glutamate
receptors

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

Figure 7.5 | Accuracy for each receptor family obtained by LIFT without unlabeled training data (LIFT (w/o)), LIFT,
the tree algorithm, and SVMwith the RBF kernel. Data showmean ± s.e.m.

132 LIGAND FINDING BY MULTI-LABEL CLASSIFICATION

𝛼 = 0.05). One of reasons of the difference might be that LIFT can treat multi-
labels effectively whereas SVM and the tree algorithm cannot. Moreover, SVM
treated discrete values as continuous, presumably resulting in lower accuracy.

Since each family has many classes from 9 to 71, accuracy of LIFT, which is more
than 50 % in most cases, is high enough. Furthermore, unlabeled training data can
be used effectively in LIFT in the semi-supervised manner. Our results therefore
indicate that LIFT should be valuable for ϐinding new ligands and contribute to
biology and biochemistry.

By using LIFT, we can ϐind new ligand candidates from any training data, hence
LIFT can be used as a tool for actual biological experiments to narrow down new
ligand candidates. Checking such candidates obtained by LIFT in biological exper-
iments is a future work.

7.3 Summary

In this chapter, we have proposed the semi-supervised learning algorithm, called
LIFT, for ligand ϐinding from databases. LIFT performs preference learning, that
is, multi-label classiϐication and ranking, in the semi-supervised manner. First,
every dataset is translated into a (formal) context, followed by clustering of it by
FCA by putting on a concept lattice, where each continuous (real-valued) value is
discretized based on the binary encoding scheme. Then, on the lattice, the prefer-
ences (formally,𝑚-preferences) of class labels for unlabeled test data are obtained
by taking labels of training data into account.

Since LIFT is a ϐlexible learning algorithm, it can be applied to any databases in
various domains. Thus considering contributions to other domains is one of the
future works. Another future work is to treat incremental databases in LIFT, be-
cause lots of databases are frequently updated whereas LIFT cannot directly treat
such incremental databases. LIFT can display weighted classiϐication rules, which
are easily-interpreted, thus analysis of learned rules from biological point of view
is also a future work. Furthermore, using biological background knowledge such
as the structure of a receptor for learning is an interesting future work.

8

CONCLUSION

TčĎĘ ęčĊĘĎĘ ĉĊěĊđĔĕĊĉ several approaches to computational learning. Namely,
Part I analyzed theories of computational learning, Part II developed machine

learning algorithms using discretization, and Part III presented preference learn-
ing algorithms using Formal Concept Analysis.

In Chapter 2, we presented learning of ϔigures, nonempty compact sets in Eu-
clidean space, based on the Gold-style learning model for a computable foundation
for binary classiϐication of multivariate data. Encoding real vectors with no numer-
ical error requires inϐinite sequences, resulting in the gap between each real vector
and its discretized representation used for the actual machine learning process.
Our motivation was to bridge the gap to overcome poor computational analysis
in binary classiϐication as well as in other machine learning tasks such as regres-
sion and clustering. In the chapter, we amalgamated two processes; discretization
and binary classiϐication. Each learning target, the set of real vectors classiϐied as
positive, is treated as a ϐigure. A learner receives discretized vectors as input data
and outputs a sequence of discrete representations of the target ϐigure in the form
of self-similar sets, known as fractals. The generalization error of each output is
measured by the Hausdorff metric. Using this learning framework, we revealed
the hierarchy of learnabilities under various learning criteria in the track of tra-
ditional analysis of learnabilities in the Gold-style learning model. Moreover, we
showed a mathematical connection between machine learning and fractal geom-
etry by measuring the complexity of learning using the Hausdorff dimension and
the VC dimension. Furthermore, we analyzed computability aspects of learning of
ϐigures using the framework of Type-2 Theory of Effectivity (TTE).

In Chapter 3, we proposed a novel measure of the difference between two sets
of data, called the coding divergence, and unify two processes discretization and
learning computationally. Discretization of continuous data was realized by a topo-
logical mapping (in the sense of mathematics) from the 𝑑-dimensional Euclidean
spaceℝௗ into the Cantor space Σఠ , and the simplest model was learned in the Can-
tor space, which corresponds to the minimum open set separating the given two
sets of data. Furthermore, we constructed a classiϐier using the divergence, and
experimentally illustrated robust performance of it.

We proposed in Chapter 4 approaches to exploit compression algorithms for
clustering numerical data. Our ϐirst contribution was to design a measure, called

134 CONCLUSION

the Minimum Code Length (MCL), that can score the quality of a given clustering
result under the light of a ϔixed encoding scheme. Our second contribution was to
propose a general strategy to translate any encoding method into a cluster algo-
rithm, called COOL (COding-Oriented cLustering). COOL has a low computational
cost since it scales linearly with the data set size. The clustering results of COOL
were also shown to minimize MCL. To illustrate further this approach, we consid-
ered the Gray Code as the encoding scheme to present G-COOL. G-COOL can ϐind
clusters of arbitrary shapes and remove noise. Moreover, it is robust to change in
the input parameters; it requires only two lower bounds for the number of clus-
ters and the size of each cluster, whereas most algorithms for ϐinding arbitrarily
shaped clusters work well only if all parameters are tuned appropriately. G-COOL
was theoretically shown to achieve internal cohesion and external isolation and
was experimentally shown to work well for both synthetic and real data sets.

In Chapter 5, we presented a fast spatial clustering algorithm for multivariate
data, called BOOL (Binary cOding Oriented cLustering), which can detect arbitrar-
ily shaped clusters and is noise tolerant. BOOL handles data using a two-step pro-
cedure: data points are ϐirst discretized and represented as binary words; clusters
are then iteratively constructed by agglomerating smaller clusters using this rep-
resentation. This latter step is carried out with linear complexity with respect to
the number of data points by sorting such binary representations, which results
in dramatic speedups when compared with other clustering techniques. Experi-
ments showed that BOOL is faster than K-means, and about two to three orders of
magnitude faster than two state-of-the-art algorithms that can detect non-convex
clusters of arbitrary shapes. We also showed that results of BOOL are robust to
changes in parameters, whereas most algorithms for arbitrarily shaped clusters
are known to be overly sensitive to such changes. The key to the robustness of
BOOL is the hierarchical structure of clusters introduced automatically by increas-
ing the precision of the discretization.

We proposed in Chapter 6 a new approach for semi-supervised learning us-
ing closed set lattices, which have been recently used for frequent pattern mining
within the framework of the data analysis technique of Formal Concept Analysis
(FCA). We presented a learning algorithm, called SELF (SEmi-supervised Learning
via FCA), which performs as a multiclass classiϐier and a label ranker for mixed-
type data containing both discrete and continuous variables, whereas only few
learning algorithms such as the decision tree-based classiϐier can directly handle
mixed-type data. From both labeled and unlabeled data, SELF constructs a closed
set lattice, which is a partially ordered set of data clusters with respect to sub-
set inclusion, via FCA together with discretizing continuous variables, followed by
learning classiϐication rules through ϐindingmaximal clusters on the lattice. More-
over, it can weight each classiϐication rule using the lattice, which gives a partial
order of preference over class labels. We experimentally illustrated the competi-
tive performance of SELF in classiϐication and ranking compared to other learning
algorithms using UCI datasets.

To date, enormous studies have been devoted to investigate biochemical func-
tions of receptors, which have crucial roles for signal processing in organisms. Lig-
ands are key tools in experiments since receptor speciϐicity with respect to them
enables us to control activity of receptors. However, ϐinding ligands is difϐicult;
choosing ligand candidates relies on expert knowledge of biologists and conduct-
ing test experiments in vivo or in vitro has a high cost. In Chapter 7, we investi-
gated the ligand ϐinding problem with a machine learning approach by formalizing

CONCLUSION 135

the problem as multi-label classiϔication mainly discussed in the area of preference
learning. We developed an algorithm, called LIFT (Ligand FInding via Formal Con-
cepT Analysis), for multi-label classiϐication, which can treat ligand data in data-
bases in a semi-supervised manner. The key to LIFT is to achieve clustering by
putting an original dataset on lattices using the data analysis technique of Formal
Concept Analysis (FCA), followed by obtaining the preference for each label using
the lattice structure. Experiments using real data of ligands and receptors in the
IUPHAR database showed that LIFT effectively solves the task compared to other
machine learning algorithms.

To conclude, we believe that our studies on computational learning will become
one of key approaches to machine learning for next generation. Discrete structure
manipulation is now becoming more and more important to effectively and efϐi-
ciently treat big data and structured data (Minato, 2011). This thesis is a bridge
between data analysis in the real world, mainly for multivariate data, and discrete
and computational manipulations of such data on computers.

APPENDIX A

MATHEMATICAL BACKGROUND

MĆęčĊĒĆęĎĈĆđ ćĆĈĐČėĔĚēĉ of this thesis is summarized. Namely, sets, func-
tions, topology, and metric space. See literatures (Dieudonné, 1960; Hopcroft

and Ullman, 1979) for complete explanation about the basic concepts.

A.1 Sets and Functions

Let 𝐴 and 𝐵 be sets. If all elements in 𝐴 are contained in 𝐵, we write 𝐴 ⊆ 𝐵. If both
𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵 hold, we write 𝐴 ⊂ 𝐵. The notation 𝐴 ⧵ 𝐵 means the relative
complement of 𝐵 in 𝐴. The cardinality of a set 𝐴 is denoted by #𝐴, and the power
set of 𝐴 is denoted by 2஺. The Cartesian product of two sets 𝐴 and 𝐵, denoted by
𝐴 × 𝐵, is the set of ordered pairs such that

𝐴 × 𝐵 = { (𝑎, 𝑏) ห 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 } .

A correspondence from a set 𝐴 to a set 𝐵 is a triplet 𝑓 = (𝐴, 𝐵, 𝐺(𝑓)), wherecorrespondence
𝐺(𝑓) ⊆ 𝐴 × 𝐵. The set 𝐴 is called the source, 𝐵 the target, and 𝐺(𝑓) the graph of 𝑓.source

target
graph

For a subset 𝑋 ⊆ 𝐴, the image of 𝑋 under 𝑓 is deϐined by

image 𝑓(𝑋) ≔ { 𝑏 ∈ 𝐵 ห (𝑎, 𝑏) ∈ 𝐺(𝑓) for some 𝑎 ∈ 𝑋 } ,

and the inverse of 𝑓 is deϐined byinverse

𝑓ିଵ ≔ ቀ𝐵, 𝐴, 𝐺(𝑓ିଵ) ቁ , where 𝐺(𝑓ିଵ) ≔ { (𝑏, 𝑎) ห (𝑎, 𝑏) ∈ 𝐺(𝑓) } .

The domain and the range of 𝑓 are written by dom(𝑓) and range(𝑓), respectively,domain
range which are deϐined as

dom(𝑓) ≔ 𝑓ିଵ(𝐵),
range(𝑓) ≔ 𝑓(𝐴).

A correspondence 𝑓 = (𝐴, 𝐵, 𝐺(𝑓)) is written by 𝑓 ∶⊆ 𝐴 ⇉ 𝐵 in general. In
particular, for a correspondence 𝑓 ∶⊆ 𝐴 ⇉ 𝐵, if an image 𝑓({𝑎}) has only one
elements for every 𝑎 ∈ dom(𝑓), 𝑓 is called a partial function from 𝐴 to 𝐵, writtenpartial function

A.2 TOPOLOGY AND METRIC SPACE 137

by 𝑓 ∶⊆ 𝐴 → 𝐵. Moreover, if dom(𝑓) = 𝐴 holds for a partial function 𝑓 ∶⊆ 𝐴 → 𝐵,
𝑓 is called a total function total function, written by 𝑓 ∶ 𝐴 → 𝐵. If 𝑓 is a total or partial function,
𝑓 is called a function function, mappingor a mapping.

For a partial function 𝑓 ∶⊆ 𝐴 → 𝐵, we deϐine

𝑓(𝑎) ≔ ൝ 𝑓({𝑎}) if 𝑎 ∈ dom(𝑓),
div if 𝑎 ∉ dom(𝑓).

A.2 Topology andMetric Space

Letℕ be the set of natural numbers including 0,ℚ the set of rational numbers, and
ℝ the set of real numbers. The setℕା (resp. ℝା) is the set of positive natural (resp.
real) numbers. The 𝑑 product ofℝ,ℝ×ℝ×…×ℝ, is denoted byℝௗ . Note thatℝଵ

is exactly the same as ℝ. A point 𝑥 in the space ℝௗ is denoted by

(𝑥ଵ, 𝑥ଶ, … , 𝑥ௗ) or
⎡
⎢
⎢
⎣

𝑥ଵ
𝑥ଶ
⋮
𝑥ௗ

⎤
⎥
⎥
⎦
.

For any 𝑑 pairs of real numbers 𝑝௜ and 𝑞௜ with 𝑝௜ < 𝑞௜ (𝑖 = 1,… , 𝑑), the set of
elements (𝑥ଵ, 𝑥ଶ, … , 𝑥ௗ) ofℝௗ such that 𝑝௜ < 𝑥௜ < 𝑞௜ for all 𝑖 ∈ {1, 2, … , 𝑑} is called
an open interval, written by open interval

(𝑝ଵ, 𝑞ଵ) × (𝑝ଶ, 𝑞ଶ) × … × (𝑝ௗ , 𝑞ௗ);

the set of elements (𝑥ଵ, 𝑥ଶ, … , 𝑥ௗ)ofℝௗ such that𝑝௜ ≤ 𝑥௜ ≤ 𝑞௜ for all 𝑖 ∈ {1, 2, … , 𝑑}
is called a closed interval, written by closed interval

[𝑝ଵ, 𝑞ଵ] × [𝑝ଶ, 𝑞ଶ] × … × [𝑝ௗ , 𝑞ௗ].

Let 𝑋 be a set. A metric on 𝑋 is a function metric

𝔡 ∶ 𝑋 × 𝑋 → ℝ

such that, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,

𝔡(𝑥, 𝑦) ≥ 0 (non-negativity),
𝔡(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 (identity),
𝔡(𝑥, 𝑦) = 𝔡(𝑦, 𝑥) (symmetry),
𝔡(𝑥, 𝑧) ≤ 𝔡(𝑥, 𝑦) + 𝔡(𝑦, 𝑧) (triangle inequality).

A pair (𝑋, 𝔡) denotes a metric space 𝑋 together with 𝔡, that is, for all pairs of ele- metric space
ments 𝑥, 𝑦 ∈ 𝑋, the distance between them is deϐined by the metric 𝔡. One of the
most popular metric spaces is the Euclidean space, where 𝑋 = ℝௗ and the metric Euclidean space
𝔡 is the Euclidean metric 𝑑E such that Euclidean metric

𝑑E(𝑥, 𝑦) ≔ ඩ
ௗ

෍
௜ୀଵ

(𝑥௜ − 𝑦௜)ଶ

138 MATHEMATICAL BACKGROUND

for all𝑥, 𝑦 ∈ ℝௗ with 𝑥 = (𝑥ଵ, … , 𝑥ௗ) and𝑦 = (𝑦ଵ, … , 𝑦ௗ). Generally, the
Minkowski metric

Minkowski
metric, or 𝐿௣ metric

𝐿௣ metric
, is deϐined as

𝑑௣(𝑥, 𝑦) ≔ ቌ
ௗ

෍
௜ୀଵ

ห𝑥௜ − 𝑦௜ห
௣ቍ

ଵ /௣

.

If 𝑝 = 1, this metric coincides with the Manhattan metric, and if 𝑝 = 2, it with theManhattan metric
Euclidean metric. We also use the case 𝑝 = ∞ (e.g., Subsection 4.3.2), called the
Chebyshev metric of Maximummetric, whereChebyshev metric

Maximummetric
𝑑ஶ(𝑥, 𝑦) ≔ max

௜∈{ଵ,ଶ,…,ௗ}
ห𝑥௜ − 𝑦௜ห .

In the following, we consider the 𝑑-dimensional Euclidean spaceℝௗ equipped
with the Euclidean metric 𝑑E. For a point 𝑎 ∈ ℝௗ and 𝜀 ∈ ℝା, the ball 𝐵(𝑎, 𝜀) ofball
radius 𝜀 centered at 𝑎 is deϐined by

𝐵(𝑎, 𝜀) ≔ ቄ 𝑥 ∈ ℝௗ ቚ 𝑑E(𝑎, 𝑥) < 𝜀 ቅ .

For a subset𝑆 ⊆ ℝௗ and its element𝑎 ∈ 𝑆
inner point, neighborhood

, if there exists 𝜀 such that𝐵(𝑎, 𝜀) ⊆ 𝑆,
𝑎 is called an inner point of 𝑆, and 𝑆 is called a neighborhood of 𝑎

open kernel
. The set of inner

points of 𝑆 is said as the open kernel of 𝑆, denoted by 𝑆∘. An inner point ofℝௗ ⧵𝑆 is
an outer point of 𝑆. The set of outer points of 𝑆 is called the exterior of 𝑆, denotedouter point

exterior by 𝑆ୣ. Moreover, a point in 𝑆 which is neither an inner point nor an outer point is
said as a boundary point. The set of boundary pointsℝௗ ⧵(𝑆∘∪𝑆ୣ) is the boundaryboundary point

boundary of 𝑆, denoted by 𝑆ୠ.
For a subset 𝑆 ⊆ ℝௗ , the set 𝑆∘ ∪ 𝑆ୠ is called the closure of 𝑆, denoted by 𝑆. Inclosure

general,

𝑆∘ ⊆ 𝑆 ⊆ 𝑆

holds. In particular, if

𝑆 = 𝑆∘,

we call 𝑆 an open set, and ifopen set

𝑆 = 𝑆,

we call it a closed set.closed set
Let 𝑆 be a subset of ℝௗ . If for every arbitrary collection {𝑂௜}ప∈ூ of open sets

with 𝐼 ⊆ ℕ such that

𝑆 ⊆ራ
௜∈ூ

𝑂௜ ,

there exists a ϐinite subset {𝑖ଵ, 𝑖ଶ, … , 𝑖௠} of 𝐼 such that

𝑆 ⊆ 𝑂௜భ ∪ 𝑂௜మ ∪ … ∪ 𝑂௜೘ ,

A.2 TOPOLOGY AND METRIC SPACE 139

then 𝑆 is called a compact set compact set. The set of compact sets of ℝௗ is denoted by 𝒦, and
the set of nonempty compact sets of ℝௗ is denoted by𝒦∗.

For a subset 𝑆 ⊆ ℝௗ , if 𝑆 ⊆ 𝐵(𝑎, 𝜀) for some ball𝐵(𝑎, 𝜀), 𝑆 is said as bounded bounded. In
the Euclidean space ℝௗ , we can apply the well-known Heine–Borel theorem Heine–Borel theorem: For a
subset 𝑆 ⊆ ℝௗ , 𝑆 is compact if and only if 𝑆 is closed and bounded.

Let us consider a sequence (𝑥௜)௜∈ℕ over 𝑋 in a metric space (𝑋, 𝔡). If for arbi-
trary 𝜀 ∈ ℝା there exists a natural number 𝑛଴ such that

𝔡(𝑥௠ , 𝑥௡) < 𝜀

for all 𝑚, 𝑛 with 𝑚 > 𝑛଴ and 𝑛 > 𝑛଴, (𝑥௜)௜∈ℕ is called a Cauchy sequence. If every Cauchy sequence
Cauchy sequence has a limit, the metric space (𝑋, 𝔡) is said as complete. complete

In a metric space (𝑋, 𝔡), the diameter of a nonempty subset 𝑆 is deϐined by diameter

|𝑆| ≔ sup { 𝔡(𝑥, 𝑦) ห 𝑥, 𝑦 ∈ 𝑆 }

for all 𝑥, 𝑦 ∈ 𝑆. A set 𝑆 is countable if there is a bijection from ℕ to 𝑆. A set 𝒰 is a countable
cover of 𝑆 ⊆ 𝑆 if 𝒰 is countable and cover

𝑆 ⊆ ራ
௎∈𝒰

𝑈,

and 𝒰 is a 𝛿-cover of 𝑋 if 𝒰 is a cover of 𝑋 and |𝑈| ≤ 𝛿 for all 𝑈 ∈ 𝒰. 𝛿-cover

Symbols

Sets and Topological Spaces

ℕ The set of natural numbers including 0
ℕା The set of positive natural numbers; i.e., ℕା = ℕ ⧵ {0}
ℚ The set of rational numbers
ℝ The set of real numbers
ℝା The set of positive real numbers
𝑑 The number of dimensions (𝑑 ∈ ℕା)
ℝௗ 𝑑-dimensional Euclidean space
𝒦∗ The set of ϐigures (nonempty compact subsets ofℝௗ)
(𝑎, 𝑏) The open interval { 𝑥 ∈ ℝ ∣ 𝑎 < 𝑥 < 𝑏 }
[𝑎, 𝑏] The closed interval { 𝑥 ∈ ℝ ∣ 𝑎 ≤ 𝑥 ≤ 𝑏 }
ℐௗ The unit interval [0, 1] × … × [0, 1]
𝐾, 𝐿 Figures (nonempty compact sets)
ℱ Set of Figures
#𝑋 The number of elements in set 𝑋
𝑑E The Euclidean metric, cf. Section 2.2
𝑑H The Hausdorff metric, cf. Section 2.2

Fractal Geometry and Dimensions

CT Contraction for real numbers, cf. Section 2.2
𝐶 Finite set of contractions, cf. Section 2.2
𝐂𝐓 Contraction for ϐigures, cf. Section 2.2
ℌ The Hausdorff measure, cf. Subsection 2.5.1
dimH The Hausdorff dimension, cf. Subsection 2.5.1
dimB The box-counting dimension, cf. Subsection 2.5.1
dimS The similarity dimension, cf. Subsection 2.5.1
dimVC The VC dimension, cf. Subsection 2.5.1

Strings

Σ Alphabet
Σௗ The set of ϐinite sequences whose length are 𝑑;

i.e., Σௗ = {𝑎ଵ𝑎ଶ…𝑎ௗ ∣ 𝑎௜ ∈ Σ}
Σ∗ The set of ϐinite sequences
Σା The set of ϐinite sequences without the empty string 𝜆

SYMBOLS 141

Σఠ The set of inϐinite sequences (Cantor space)
𝜆 The empty string
𝑢, 𝑣, 𝑤 Finite sequences
𝑤 ⊑ 𝑝 𝑤 is a preϐix of 𝑝 (𝑤 ⊏ 𝑝 is 𝑤 ⊑ 𝑝 and 𝑤 ≠ 𝑝)
↑𝑤 The set {𝑝 ∈ Σఠ ∣ 𝑤 ⊏ 𝑝}
↑𝑊 The set {𝑝 ∈ Σఠ ∣ 𝑤 ⊑ 𝑝 for some𝑤 ∈ 𝑊}, cf. Section 3.2
⟨⋅⟩ The tupling function;

i.e., ⟨ 𝑝ଵ, 𝑝ଶ, … , 𝑝ௗ ⟩ ≔ 𝑝ଵ଴𝑝ଶ଴ …𝑝ௗ଴𝑝ଵଵ𝑝ଶଵ …𝑝ௗଵ𝑝ଵଶ𝑝ଶଶ …𝑝ௗଶ … , cf. Section 2.2
|𝑤| The length of 𝑤

If 𝑤 = ⟨𝑤ଵ, … , 𝑤ௗ ⟩ ∈ (Σௗ)∗, |𝑤| = |𝑤ଵ| = ⋯ = |𝑤ௗ|
|𝑊| The size of𝑊 deϐined by ∑௪∈ௐ |𝑤|, cf. Section 3.2
diam(𝑘) The diameter of the set 𝜌(𝑤) with |𝑤| = 𝑘;

i.e., diam(𝑘) = √𝑑 ⋅ 2ି௞ , cf. Section 2.2
𝑝, 𝑞 Inϐinite sequences
𝑉, 𝑊 Set of ϐinite or inϐinite sequences

Computable Analysis

𝜌 Binary representation, cf. Section 2.2
𝜉, 𝜁 Representation;

i.e., a mapping from ϐinite or inϐinite sequences to some objects,
cf. Subsection 2.6.1

𝜉 ≤ 𝜁 𝜉 is reducible to 𝜁, cf. Subsection 2.6.1
𝜉 ≡ 𝜁 𝜉 is equivalent to 𝜁, cf. Subsection 2.6.1
𝜈ℚ೏ Representation for rational numbers, cf. Subsection 2.6.1
𝜈𝒬 Representation for ϐinite sets of rational numbers, cf. Subsection 2.6.1
𝜑 Embedding
𝛽 Base, cf. Deϐinition 3.3
𝜑ఉ Base-𝛽 embedding, cf. Deϐinition 3.3
𝜑ୋ Gray code embedding, cf. Deϐinition 4.7
𝜏ஊഘ Cantor topology, cf. Deϐinition 3.1

Learning Theory

ℋ The hypothesis space (the set of ϐinite sets of ϐinite sequences),
cf. Section 2.2

ℋே The set {𝐻 ∈ ℋ ∣ #𝐻 ∈ 𝑁 }, cf. SubSection 2.3.1
𝐻 Hypothesis, cf. Section 2.2
ℎ Classiϐier of hypothesis𝐻, cf. Section 2.2
𝜅 The mapping from hypotheses to ϐigures, cf. Equation (2.7)
M Learner, cf. Section 2.2
𝜎 Presentation (informant or text), cf. Section 2.2
Pos(𝐾) The set of ϐinite sequences of positive examples of 𝐾;

i.e., {𝑤 ∣ 𝜌(𝑤) ∩ 𝐾 ≠ ∅}, cf. Section 2.2
Pos௞(𝐾) The set {𝑤 ∈ Pos(𝐾) ∣ |𝑤| = 𝑘}, cf. Subsection 2.3.1
Neg(𝐾) The set of ϐinite sequences of negative examples of 𝐾;

i.e., {𝑤 ∣ 𝜌(𝑤) ∩ 𝐾 = ∅}, cf. Section 2.2

142 SYMBOLS

Databases
𝜏 = (𝐻, 𝑋) Table, pair of header 𝐻 and body 𝑋
set(𝑋) The set of tuples of body 𝑋
ℎ Feature (element in 𝐻)
𝑥, 𝑦 Tuple
𝑥(ℎ) Value of 𝑥 for attribute ℎ ∈ 𝐻
𝑥|௃ Projection of 𝑥 on 𝐽 ⊆ 𝐻
|𝜏| Number of tuples
⊥ Missing value
𝑛 Number of data (objects)
𝑑 Number of features
Dom(ℎ) Domain of the feature ℎ

Clustering

𝐶, 𝐷 Cluster (set of objects)
𝒞, 𝒟 Partition (set of clusters)
𝐾 Number of clusters
𝑘 Discretization level
𝑁 Noise parameter
𝑙 Distance parameter

Classification and Ranking

𝜆 Label
ℒ The domain of labels, cf. Subsection 6.2.4
Λ(𝑥) Single Label (Chapter 6) or set of labels (Chapter 7) of

object (tuple) 𝑥, cf. Subsection 6.2.3 and Subsection 7.1.1
Γ(𝐺) Set of labeled objects in 𝐺, cf. Subsection 6.2.3
𝑅 Classiϐication rule (pair of set of attributes and label),

cf. Subsection 6.2.3
𝜔(𝑅) Weight of classiϐication rule 𝑅, cf. Subsection 6.2.3
lPref(𝜆) 𝑙-preference of label 𝜆, cf. Deϐinition 6.8
≺∗ True partial order, cf. Subsection 6.3.1
≺ Predicted partial order, cf. Subsection 6.3.1
CR(≺,≺∗) Correctness of≺, cf. Subsection 6.3.1
CP(≺) Completeness of≺, cf. Subsection 6.3.1
mPref௞௬(𝜆 ∣𝜏) 𝑚-preference of label 𝜆 at level 𝑘 for tuple 𝑦 with respect to 𝜏,

cf. Subsection 7.1.1
mPref௬(𝜆 ∣𝜏) 𝑚-preference of label 𝜆 for tuple 𝑦 with respect to 𝜏

(abbreviated as 𝜓௬(𝜆) if 𝜏 is understood from context),
cf. Subsection 7.1.1

Formal Concept Analysis

𝐺 The set of objects, cf. Subsection 6.2.1
𝑀 The set of attributes, cf. Subsection 6.2.1

SYMBOLS 143

𝐼 Binary relation between 𝐺 and 𝑀, cf. Subsection 6.2.1
(𝐺,𝑀, 𝐼) Context, cf. Subsection 6.2.1
𝑔 Object, identiϐied with tuple, cf. Subsection 6.2.1
𝑚 Attribute, cf. Subsection 6.2.1
ℎ.𝑚 Qualiϐied attribute generated from feature ℎ, cf. Subsection 6.2.1
′′ Closure operator, cf. Subsection 6.2.2
𝔅(𝐺,𝑀, 𝐼) Concept lattice, cf. Subsection 6.2.2
𝔅௞(𝜏) Concept lattice generated from table 𝜏 at discretization level 𝑘,

cf. Section 7.1
𝑘୫ୟ୶ Maximum discretization level, cf. Deϐinition 7.7

Bibliography

C. C. Aggarwal and P. S. Yu. On classiϐication of high-cardinality data streams.
In Proceedings of 2010 SIAM International Conference on Data Mining, pages
802–813, 2010.

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. On demand classiϐication of data
streams. In Proceedings of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 503–508, 2004.

D. Angluin. Inductive inference of formal languages from positive data. Information
and Control, 45(2):117–135, 1980.

D. Angluin. Inference of reversible languages. Journal of the ACM, 29(3):741–765,
1982.

K. Apsītis, S. Arikawa, R. Freivalds, E. Hirowatari, and C. H. Smith. On the inductive
inference of recursive real-valued functions. Theoretical Computer Science, 219
(1–2):3–12, 1999.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 1–16, 2002.

D. C. Baird. Experimentation: An Introduction to Measurement Theory and Experi-
ment Design. Benjamin Cummings, 3 edition, 1994.

P. J. Ballester and J. B. O. Mitchell. A machine learning approach to predicting pro-
tein–ligand binding afϐinity with applications to molecular docking. Bioinfor-
matics, 26(9):1169–1175, 2010.

M. F. Barnsley. Fractals Everywhere. Morgan Kaufmann, 2 edition, 1993.

Y. M. Barzdin. Inductive inference of automata, languages and programs (in
Russian). In Proceedings of the International Congress of Mathematicians, vol-
ume 2, pages 455–460, 1974.

E. B. Baum and D. Haussler. What size net gives valid generalization? Neural com-
putation, 1(1):151–160, 1989.

G. A. Beer. Topologies on Closed and Closed Convex Sets, volume 268 ofMathematics
and Its Applications. Kluwer Academic Publishers, 1993.

S. Ben-David and E. Dichterman. Learning with restricted focus of attention. Jour-
nal of Computer and System Sciences, 56(3):277–298, 1998.

BIBLIOGRAPHY 145

P. Berkhin. A survey of clustering data mining techniques. Grouping Multidimen-
sional Data, pages 25–71, 2006.

G. Beslon, D. P. Parsons, J. M. Peña, C. Rigotti, and Y. Sanchez-Dehesa. From digital
genetics to knowledge discovery: Perspectives in genetic network understand-
ing. Intelligent Data Analysis, 14(2):173–191, 2010.

C. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer, 2007.

V. G. Blinova, D. A. Dobrynin, V. K. Finn, S. O. Kuznetsov, and E. S. Pankratova.
Toxicology analysis by means of the JSM-method. Bioinformatics, 19(10):
1201–1207, 2003.

L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Infor-
mation and Control, 28(2):125–155, 1975.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the
Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

V. Brattka and G. Presser. Computability on subsets of metric spaces. Theoretical
Computer Science, 305(1-3):43–76, 2003.

V. Brattka and K. Weihrauch. Computability on subsets of Euclidean space I: Closed
and compact subsets. Theoretical Computer Science, 219(1-2):65–93, 1999.

G. Brock, V. Pihur, S. Datta, and S. Datta. clValid: An R package for cluster validation.
Journal of Statistical Software, 25(4):1–22, 2008.

J. R. Büchi. On a decision method in restricted second order arithmetic. In Proceed-
ings of International Congress on Logic, Methodology and Philosophy of Science,
pages 1–12, 1960.

F. Chang, W. Qiu, R. H. Zamar, R. Lazarus, and X. Wang. clues: An R package for non-
parametric clustering based on local shrinking. Journal of Statistical Software,
33(4):1–16, 2010.

V. Chaoji, M. A. Hasan, S. Salem, and M. J. Zaki. SPARCL: An effective and efϐicient al-
gorithm for mining arbitrary shape-based clusters. Knowledge and Information
Systems, 21(2):201–229, 2009.

V. Chaoji, G. Li, H. Yildirim, and M. J. Zaki. ABACUS: Mining arbitrary shaped clusters
from large datasets based on backbone identiϐication. In Proceedings of 2011
SIAM International Conference on Data Mining, pages 295–306, 2011.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press,
2006. URL http://www.kyb.tuebingen.mpg.de/ssl-book.

H. Cheng, Z. Liu, and J. Yang. Sparsity induced similarity measure for label propaga-
tion. In 12th IEEE International Conference on Computer Vision, pages 317–324,
2009.

W. Cheng, M. Rademaker, B. De Baets, and E. Hüllermeier. Predicting partial or-
ders: Ranking with abstention. In J. Balcázar, F. Bonchi, A. Gionis, and M. Sebag,
editors, Machine Learning and Knowledge Discovery in Databases, volume 6321
of Lecture Notes in Computer Science, pages 215–230. Springer, 2010.

http://www.kyb.tuebingen.mpg.de/ssl-book

146 BIBLIOGRAPHY

R. Cilibrasi and P. M. B. Vitányi. Clustering by compression. IEEE Transactions on
Information Theory, 51(4):1523–1545, 2005.

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C.
Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. A second generation force
ϐield for the simulation of proteins, nucleic acids, and organic molecules. Journal
of the American Chemical Society, 117(19):5179–5197, 1995.

R. Dara, S. C. Kremer, and D. A. Stacey. Clustering unlabeled data with SOMs im-
proves classiϐication of labeled real-world data. In Proceedings of the 2002 In-
ternational Joint Conference on Neural Networks, volume 3, pages 2237–2242,
2002.

C. J. Date. An Introduction to Database Systems. Addison Wesley, 8 edition, 2003.

B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cambridge Uni-
versity Press, 2 edition, 2002.

M. de Brecht. Topological and Algebraic Aspects of Algorithmic Learning Theory.
PhD thesis, Graduate School of Informatics, Kyoto University, 2010.

M. de Brecht and A. Yamamoto. Σ଴ఈ-admissible representations. In Proceedings
of the 6th International Conference on Computability and Complexity in Analysis,
2009.

M. de Brecht and A. Yamamoto. Topological properties of concept spaces (full ver-
sion). Information and Computation, 208:327–340, 2010.

C. De La Higuera and J.-C. Janodet. Inference of 𝜔-languages from preϐixes. In
N. Abe, R. Khardon, and T. Zeugmann, editors, Algorithmic Learning Theory, vol-
ume 2225 of Lecture Notes in Computer Science, pages 364–377. Springer, 2001.

S. E. Decatur and R. Gennaro. On learning from noisy and incomplete examples.
In Proceedings of the 8th Annual Conference on Computational Learning Theory,
pages 353–360, 1995.

A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-supervised clustering using
genetic algorithms. In Proceedings of Artiϔicial Neural Networks in Engineering,
pages 809–814, 1999.

J. Dieudonné. Foundations of Modern Analysis. Academic Press, 1960.

P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of
the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 71–80, 2000.

A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on
the number of examples needed for learning. Information and Computation, 82
(3):247–261, 1989.

T. Elomaa and J. Rousu. Necessary and sufϐicient pre-processing in numerical range
discretization. Knowledge and Information Systems, 5(2):162–182, 2003.

BIBLIOGRAPHY 147

M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In Proceedings of the 2nd
International Conference on Knowledge Discovery and Data Mining, volume 96,
pages 226–231, 1996.

K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wiley,
2003.

U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued
attributes for classiϐication learning. In Proceedings of the 13th International
Joint Conference on Artiϔicial Intelligence, pages 1022–1029, 1993.

H. Federer. Geometric Measure Theory. Springer, 1996.

R. Fisher. Statistical Methods for Research Workers. Oliver and Boyd, 1925.

R. Fisher. Statistical Methods and Scientiϔic Inference. Oliver and Boyd, 1956.

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL http:
//archive.ics.uci.edu/ml.

R. Freivalds and C. H. Smith. On the role of procrastination in machine learning.
Information and Computation, 107(2):237–271, 1993.

N. Friedman, M. Goldszmidt, and T. J. Lee. Bayesian network classiϐication with
continuous attributes: Getting the best of both discretization and parametric
ϐitting. In Proceedings of the 15th International Conference on Machine Learning,
pages 179–187, 1998.

J. Fürnkranz and E. Hüllermeier, editors. Preference learning. Springer, 2010.

M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data streams: A review.
SIGMOD Record, 34:18–26, 2005.

J. Gama and P. Kosina. Learning decision rules from data streams. In Proceed-
ings of the 22nd International Joint Conference on Artiϔicial Intelligence, pages
1255–1260, 2011.

J. Gama and C. Pinto. Discretization from data streams: applications to histograms
and data mining. In Proceedings of the 21st Annual ACM Symposium on Applied
Computing, pages 23–27, 2006.

B. Ganter and S. Kuznetsov. Formalizing hypotheses with concepts. In B. Gan-
ter and G. W. Mineau, editors, Conceptual Structures: Logical, Linguistic, and
Computational Issues, volume 1867 of Lecture Notes in Computer Science, pages
342–356. Springer, 2000.

B. Ganter and S. Kuznetsov. Hypotheses and version spaces. In A. de Moor, W. Lex,
and B. Ganter, editors, Conceptual Structures for Knowledge Creation and Com-
munication, volume 2746 of Lecture Notes in Computer Science, pages 83–95.
Springer, 2003.

B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, 1998.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

148 BIBLIOGRAPHY

H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems: The complete book.
Prentice Hall Press, 2008.

H. Gohlke, M. Hendlich, and G. Klebe. Knowledge-based scoring function to pre-
dict protein-ligand interactions1. Journal of molecular biology, 295(2):337–356,
2000.

E. M. Gold. Limiting recursion. The Journal of Symbolic Logic, 30(1):28–48, 1965.

E. M. Gold. Language identiϐication in the limit. Information and Control, 10(5):
447–474, 1967.

S. A. Goldman, S. S. Kwek, and S. D. Scott. Learning from examples with unspeciϐied
attribute values. Information and Computation, 180(2):82–100, 2003.

L. Goodman and W. Kruskal. Measures of Association for Cross Classiϔications.
Springer, 1979.

S. Guha, R. Rastogi, and K. Shim. CURE: An efϐicient clustering algorithm for large
databases. Information Systems, 26(1):35–58, 1998.

M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation techniques.
Journal of Intelligent Information Systems, 17(2):107–145, 2001.

J. Han and M. Kamber. Data Mining. Morgan Kaufmann, 2 edition, 2006.

J. Han, M. Kamber, and A. K. H. Tung. Spatial clustering methods in data mining: A
survey. In H. J. Miller and J. Han, editors, Geographic DataMining and Knowledge
Discovery, Research Monographs in GIS. Taylor and Francis, 2001.

J. Handl, J. Knowles, and D. B. Kell. Computational cluster validation in post-
genomic data analysis. Bioinformatics, 21(15):3201, 2005.

A. Hinneburg and D. A. Keim. An efϐicient approach to clustering in large multime-
dia databases with noise. In Proceedings of the 4th International Conference on
Knowledge Discovery and Data Mining, pages 58–65, 1998.

E. Hirowatari and S. Arikawa. Inferability of recursive real-valued functions. In
M. Li and A. Maruoka, editors, Algorithmic Learning Theory, volume 1316 of Lec-
ture Notes in Computer Science, pages 18–31. Springer, 1997.

E. Hirowatari and S. Arikawa. A comparison of identiϐication criteria for inductive
inference of recursive real-valued functions. Theoretical Computer Science, 268
(2):351–366, 2001.

E. Hirowatari, K. Hirata, T. Miyahara, and S. Arikawa. Criteria for inductive infer-
ence with mind changes and anomalies of recursive real-valued functions. IEICE
Transactions on Information and Systems, 86(2):219–227, 2003.

E. Hirowatari, K. Hirata, T. Miyahara, and S. Arikawa. Refutability and reliability
for inductive inference of recursive real-valued functions. IPSJ Digital Courier,
1:141–152, 2005.

BIBLIOGRAPHY 149

E. Hirowatari, K. Hirata, and T. Miyahara. Prediction of recursive real-valued func-
tions from ϐinite examples. In T. Washio, A. Sakurai, K. Nakajima, H. Takeda,
S. Tojo, and M. Yokoo, editors, New Frontiers in Artiϔicial Intelligence, volume
4012 of Lecture Notes in Computer Science, pages 224–234. Springer, 2006.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison Wesley Publishing Company, 1979.

N. Huang, C. Kalyanaraman, K. Bernacki, and M. P. Jacobson. Molecular mechan-
ics methods for predicting protein–ligand binding. Physical Chemistry Chemical
Physics, 8(44):5166–5177, 2006.

L. Hubert and P. Arabie. Comparing partitions. Journal of Classiϔication, 2(1):
193–218, 1985.

R. Huey, G. M. Morris, A. J. Olson, and D. S. Goodsell. A semiempirical free energy
force ϐield with charge-based desolvation. Journal of computational chemistry,
28(6):1145–1152, 2007.

E. Hülermeier, J. Fünkranz, W. Cheng, and K. Brinker. Label ranking by learning
pairwise preferences. Artiϔicial Intelligence, 172(16–17):1897–1916, 2008.

G. Hulten and P. Domingos. VFML – a toolkit for mining high-speed time-changing
data streams. 2003. URL http://www.cs.washington.edu/dm/vfml/.

D. P. Huttenlocher, G. A. Klanderman, and W. A. Rucklidge. Comparing images us-
ing the Hausdorff distance. IEEE Transactions on pattern analysis and machine
intelligence, pages 850–863, 1993.

T. Hwang and R. Kuang. A heterogeneous label propagation algorithm for dis-
ease gene discovery. In SIAM International Conference on Data Mining, pages
583–594, 2010.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing
Surveys, 31(3):264–323, 1999a.

S. Jain. Hypothesis spaces for learning. Information and Computation, 209(3):
513–527, 2011.

S. Jain, D. Osherson, J. S. Royer, and A. Sharma. Systems That Learn. The MIT Press,
2 edition, 1999b.

S. Jain, E. Kinber, R. Wiehagen, and T. Zeugmann. Learning recursive functions
refutably. In N. Abe, R. Khardon, and T. Zeugmann, editors, Algorithmic Learn-
ing Theory, volume 2225 of Lecture Notes in Computer Science, pages 283–298,
2001.

S. Jain, Q. Luo, P. Semukhin, and F. Stephan. Uncountable automatic classes and
learning. Theoretical Computer Science, 412(19):1805–1820, 2011.

K. P. Jantke. Monotonic and non-monotonic inductive inference. New Generation
Computing, 8(4):349–360, 1991.

R. Jaschke, A. Hotho, C. Schmitz, B. Ganter, and G. Stumme. TRIAS–An algorithm
for mining iceberg tri-lattices. In Proceedings of the 6th IEEE International Con-
ference on Data Mining, pages 907–911, 2006.

http://www.cs.washington.edu/dm/vfml/

150 BIBLIOGRAPHY

D. H. Johnson. The insigniϐicance of statistical signiϐicance testing. The journal of
wildlife management, 63(3):763–772, 1999.

A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis. kernlab–an S4 package for ker-
nel methods in R. Journal of Statistical Software, 11(9):1–20, 2004.

G. Karypis, H. Eui-Hong, and V. Kumar. CHAMELEON: Hierarchical clustering using
dynamic modeling. Computer, 32(8):68–75, 1999.

M. Kaytoue, S. O. Kuznetsov, and A. Napoli. Revisiting numerical pattern mining
with formal concept analysis. In Proceedings of the 22nd International Joint Con-
ference on Artiϔicial Intelligence, pages 1342–1347, 2011a.

M. Kaytoue, S. O. Kuznetsov, A. Napoli, and S. Duplessis. Mining gene expression
data with pattern structures in formal concept analysis. Information Sciences,
181:1989–2001, 2011b.

M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory.
The MIT Press, 1994.

A. S. Kechris. Classical Descriptive Set Theory. Springer, 1995.

E. Keogh, S. Lonardi, C. Ratanamahatana, L. Wei, S.-H. Lee, and J. Handley.
Compression-based data mining of sequential data. DataMining and Knowledge
Discovery, 14:99–129, 2007.

R. Khardon and D. Roth. Learning to reason with a restricted view. Machine Learn-
ing, 35(2):95–116, 1999.

E. Kinber. Monotonicity versus efϐiciency for learning languages from texts. In
Algorithmic Learning Theory, volume 872 of Lecture Notes in Computer Science,
pages 395–406. Springer, 1994.

R. D. King, S. H. Muggleton, A. Srinivasan, and M. J. E. Sternberg. Structure-activity
relationships derived by machine learning: The use of atoms and their bond con-
nectivities to predict mutagenicity by inductive logic programming. Proceedings
of the National Academy of Sciences, 93(1):438–442, 1996.

D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 2: Generating All
Tuples and Permutations. Addison-Wesley Professional, 2005.

S. Kobayashi. Approximate identiϐication, ϐinite elasticity and lattice structure of
hypothesis space. Technical Report CSIM 96-04, Department of Computer Sci-
ence and Information Mathematics, The University of Electro-Communications,
1996.

S. Kok and P. Domingos. Learning Markov logic network structure via hypergraph
lifting. In Proceedings of the 26th International Conference on Machine Learning,
pages 505–512, 2009.

P. Kontkanen and P. Myllymäki. An empirical comparison of NML clustering al-
gorithms. In Proceedings of Information Theory and Statistical Learning, pages
125–131, 2008.

BIBLIOGRAPHY 151

P. Kontkanen, P. Myllymäki, T. Silander, and H. Tirri. A bayesian approach to dis-
cretization. In Proceedings of the European Symposium on Intelligent Techniques,
pages 265–268, 1997.

P. Kontkanen, P. Myllymäki, W. Buntine, J. Rissanen, and H. Tirri. An MDL frame-
work for data clustering. In P. Grünwald, I. J. Myung, and M. Pitt, editors,
Advances in Minimum Description Length: Theory and Applications. MIT Press,
2005.

S. Kullback and R. A. Leibler. On information and sufϐiciency. The Annals of Math-
ematical Statistics, 22(1):79–86, 1951.

S. O. Kuznetsov. Machine learning and formal concept analysis. In P. Eklund, ed-
itor, Concept Lattices, volume 2961 of Lecture Notes in Computer Science, pages
287–312. Springer, 2004.

S. O. Kuznetsov and M. V. Samokhin. Learning closed sets of labeled graphs
for chemical applications. In S. Kramer and B. Pfahringer, editors, Inductive
Logic Programming, volume 3625 of Lecture Notes in Computer Science, pages
190–208. Springer, 2005.

S. Lange and T. Zeugmann. Monotonic versus non-monotonic language learning.
In Nonmonotonic and Inductive Logic, volume 659 of Lecture Notes in Computer
Science, pages 254–269. Springer, 1993.

S. Lange and T. Zeugmann. Characterization of language learning front informant
under various monotonicity constraints. Journal of Experimental & Theoretical
Artiϔicial Intelligence, 6(1):73–94, 1994.

S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive lan-
guages from positive data: A survey. Theoretical Computer Science, 397(1–3):
194–232, 2008.

M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang. An information-
based sequence distance and its application to whole mitochondrial genome
phylogeny. Bioinformatics, 17(2):149–154, 2001.

M. Li, X. Chen, X. Li, B. Ma, and P. Vitányi. The similarity metric. In Proceedings of
the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 863–872,
2003.

J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time se-
ries, with implications for streaming algorithms. In Proceedings of the 8th ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,
pages 1–11, 2003.

J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a novel symbolic repre-
sentation of time series. Data mining and knowledge discovery, 15(2):107–144,
2007.

F. T. Liu, K. M. Ting, and Z. H. Zhou. Isolation forest. In Proceedings of 8th IEEE
International Conference on Data Mining, pages 413–422, 2008.

H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization: An enabling technique.
Data Mining and Knowledge Discovery, 6(4):393–423, 2002.

152 BIBLIOGRAPHY

P. M. Long and L. Tan. PAC learning axis-aligned rectangles with respect to product
distributions from multiple-instance examples. Machine Learning, 30(1):7–21,
1998.

J. MacQueen. Some methods for classiϐication and analysis of multivariate obser-
vations. In Proceedings of the 5th Berkeley symposium onmathematical statistics
and probability, volume 1, pages 281–297, 1967.

M. Maechler, P. Rousseeuw, A. Struyf, and M. Hubert. Cluster analysis basics and
extensions, 2005.

K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In Al-
gorithmTheory – SWAT 2004, volume 3111 of Lecture Notes in Computer Science,
pages 260–272. Springer, 2004.

B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, 1982.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural
images and its application to evaluating segmentation algorithms and measur-
ing ecological statistics. In Proceedings of 8th International Conference on Com-
puter Vision, volume 2, pages 416–423, 2001.

W. Merkle and F. Stephan. Refuting learning revisited. Theoretical Computer Sci-
ence, 298(1):145–177, 2003.

L. Michael. Partial observability and learnability. Artiϔicial Intelligence, 174(11):
639–669, 2010.

L. Michael. Missing information impediments to learnability. In 24th Annual Con-
ference on Learning Theory, pages 1–2, 2011.

S. Minato. Overview of erato minato project: The art of discrete structure manip-
ulation between science and engineering. New Generation Computing, 29(2):
223–228, 2011.

E. Minicozzi. Some natural properties of strong-identiϐication in inductive infer-
ence. Theoretical Computer Science, 2(3):345–360, 1976.

N. Moitessier, P. Englebienne, D. Lee, J. Lawandi, and C. R. Corbeil. Towards the
development of universal, fast and highly accurate docking/scoring methods: a
long way to go. British journal of pharmacology, 153(S1):S7–S26, 2008.

T. Motoki, T. Shinohara, and K. Wright. The correct deϐinition of ϐinite elasticity:
Corrigendum to identiϐication of unions. In Proceedings of the 4th Annual Work-
shop on Computational Learning Theory, page 375, 1991.

Y. Mukouchi and S. Arikawa. Towards a mathematical theory of machine discovery
from facts. Theoretical Computer Science, 137(1):53–84, 1995.

Y. Mukouchi and M. Sato. Refutable language learning with a neighbor system.
Theoretical Computer Science, 298(1):89–110, 2003.

N. Müller. The iRRAM: Exact arithmetic in C++. In J. Blanck, V. Brattka, and
P. Hertling, editors, Computability and Complexity in Analysis, volume 2064 of
Lecture Notes in Computer Science, pages 222–252. Springer, 2001.

BIBLIOGRAPHY 153

S. K. Murthy. Automatic construction of decision trees from data: A multi-
disciplinary survey. DataMining and Knowledge Discovery, 2(4):345–389, 1998.

J. Neyman and E. S. Pearson. On the use and interpretation of certain test criteria
for purposes of statistical inference: Part I. Biometrika, 20(1):175–240, 1928.

J. Neyman and E. S. Pearson. On the problem of the most efϐicient tests of statistical
hypotheses. Philosophical Transactions of the Royal Society of London. Series A,
231:289–337, 1933.

T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM Journal on
Scientiϔic Computing, 26:1955–1988, 2005.

S. Oishi. Why research on numerical computation with result veriϐication? (in
Japanese). Fundamentals Review, 2(2):9–19, 2008.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efϐicient mining of association rules
using closed itemset lattices. Information Systems, 24(1):25–46, 1999.

D. Perrin and J.-É. Pin. Inϔinite words. Elsevier, 2004.
M. Plantevit, A. Laurent, D. Laurent, M. Teisseire, and Y. W. Choong. Mining multidi-

mensional and multilevel sequential patterns. ACM Transactions on Knowledge
Discovery from Data, 4(1):4–37, 2010.

W. Qiu and H. Joe. Generation of random clusters with speciϐied degree of separa-
tion. Journal of Classiϔication, 23:315–334, 2006.

J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, 1993.
J. R. Quinlan. Improved use of continuous attributes in C4.5. Journal of Artiϔicial

Intelligence Research, 4:77–90, 1996.
R Development Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, 2011. URL http://www.
R-project.org.

W. S. Rasband. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA,
1997–2011. URL http://imagej.nih.gov/ij/.

B. D. Ripley. PatternRecognition andNeural Networks. Cambridge University Press,
1996.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65,
1987.

A. Sakurai. Inductive inference of formal languages from positive data enumerated
primitive-recursively. In Algorithmic Learning Theory, pages 73–83. JSAI, 1991.

J. Saquer and S. Jitender. Using closed itemsets for discovering representative asso-
ciation rules. In Z. Ras and S. Ohsuga, editors, Foundations of Intelligent Systems,
volume 1932 of Lecture Notes in Computer Science, pages 495–504. Springer,
2010.

http://www.R-project.org
http://www.R-project.org
http://imagej.nih.gov/ij/

154 BIBLIOGRAPHY

E. Schikuta and M. Erhart. The BANG-clustering system: Grid-based data analysis.
InProceedings of Advances in IntelligentDataAnalysis Reasoning aboutData, vol-
ume 1280 of Lecture Notes in Computer Science, pages 513–524. Springer, 1997.

M. Schröder. Extended admissibility. Theoretical Computer Science, 284(2):
519–538, 2002a.

M. Schröder. Admissible representations for continuous computations. PhD thesis,
dem Fachbereich Informatik, der FernUniversit ̈at – Gesamthochschule in Ha-
gen, 2002b.

E. Y. Shapiro. Inductive inference of theories from facts. Technical report, Depart-
ment of Computer Science, Yale University, 1981.

E. Y. Shapiro. Algorithmic Program Debugging. The MIT Press, 1983.

J. L. Sharman, C. P. Mpamhanga, M. Spedding, P. Germain, B. Staels, C. Dacquet,
V. Laudet, A. J. Harmar, and NC-IUPHAR. IUPHAR-DB: New receptors and tools
for easy searching and visualization of pharmacological data. Nucleic Acids Re-
search, 39:D534–D538, 2011. Database Issue.

G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution
clustering approach for very large spatial databases. In Proceedings of the 24th
International Conference on Very Large Data Bases, pages 428–439, 1998.

D. A. Simovici and C. Djeraba. Mathematical Tools for Data Mining: Set Theory,
Partial Orders, Combinatorics. Springer, 2008.

M. Skubacz and J. Hollmén. Quantization of continuous input variables for binary
classiϐication. In Intelligent Data Engineering and Automated Learning— IDEAL
2000. Data Mining, Financial Engineering, and Intelligent Agents, volume 1983
of Lecture Notes in Computer Science, pages 42–47. Springer, 2000.

M. B. Smyth. Topology. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, edi-
tors, Handbook of Logic in Computer Science, volume 1, pages 641–761. Oxford
University Press, 1992.

N. R. Tavana and K. Weihrauch. Turing machines on represented sets, a model of
computation for analysis. LogicalMethods in Computer Science, 7(2):1–21, 2011.

K. M. Ting and J. R. Wells. Multi-dimensional mass estimation and mass-based
clustering. In Proceedings of 10th IEEE International Conference on Data Mining,
pages 511–520, 2010.

B. Trakhtenbrot and Y. M. Barzdin. Konetschnyje awtomaty (powedenie i sintez),
1970. English Translation: Finite automata-behavior and synthesis, Fundamen-
tal Studies in Computer Science 1, 1975.

H. Tsuiki. Real number computation through Gray code embedding. Theoretical
Computer Science, 284(2):467–485, 2002.

A. M. Turing. On computable numbers, with the application to the entschei-
dungsproblem. Proceedings of the LondonMathematical Society, 1(42):230–265,
1937.

BIBLIOGRAPHY 155

T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 3: Collaboration of array, bitmap and
preϐix tree for frequent itemset mining. In Proceedings of the 1st International
Workshop on Open Source Data Mining: Frequent Pattern Mining Implementa-
tions, pages 77–86, 2005.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):
1134–1142, 1984.

P. Valtchev, R. Missaoui, and R. Godin. Formal concept analysis for knowledge
discovery and data mining: The new challenges. In P. Eklund, editor, Concept
Lattices, volume 2961 of Lecture Notes in Computer Science, pages 352–371.
Springer, 2004.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and its Applications, 16(2):
264–280, 1971.

V. Vapnik and A. Sterin. On structural risk minimization or overall risk in a prob-
lem of pattern recognition. Automation and Remote Control, 10(3):1495–1503,
1977.

S. Vembu and T. Gärtner. Label ranking algorithms: A survey. In Preference Learn-
ing, pages 45–64. Springer, 2010.

F. Wang and C. Zhang. Label propagation through linear neighborhoods. In
Proceedings of the 23rd international conference on Machine learning, pages
985–992, 2006.

W. Wang, J. Yang, and R. Muntz. STING: A statistical information grid approach to
spatial data mining. In Proceedings of the 23rd International Conference on Very
Large Data Bases, pages 186–195, 1997.

K. Weihrauch. Computable Analysis: An Introduction. Springer, 2000.

K. Weihrauch. The computable multi-functions on multi-represented sets are
closed under programming. Journal of Universal Computer Science, 14(6):
801–844, 2008.

K. Weihrauch and T. Grubba. Elementary computable topology. Journal of Universal
Computer Science, 15(6):1381–1422, 2009.

R. Wiehagen. A thesis in inductive inference. In J. Dix, K. P. Jantke, and P. H. Schmitt,
editors,Nonmonotonic and Inductive Logic, volume 543 of Lecture Notes in Com-
puter Science, pages 184–207. Springer, 1991.

R. Wille. Restructuring lattice theory: An approach based on hierarchies of con-
cepts. InOrdered Sets, pages 445–470. D. Reidel Publishing Company, 1982. This
article is included in Formal Concept Analysis, LNCS 5548, 314–339, Springer
(2009).

K. Wright. Identiϐication of unions of languages drawn from an identiϐiable class.
In Proceedings of the 2nd Annual Workshop on Computational Learning Theory,
pages 328–333, 1989.

156 BIBLIOGRAPHY

M. J. Zaki. Generating non-redundant association rules. In Proceedings of the 6th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 34–43, 2000.

T. Zeugmann and S. Zilles. Learning recursive functions: A survey. Theoretical
Computer Science, 397(1-3):4–56, 2008.

T. Zeugmann, S. Lange, and S. Kapur. Characterizations of monotonic and dual
monotonic language learning. Information and Computation, 120(2):155–173,
1995.

Y. Zhang, B. Feng, and Y. Xue. A new search results clustering algorithm based on
formal concept analysis. In Proceedings of 5th International Conference on Fuzzy
Systems and Knowledge Discovery, pages 356–360. IEEE, 2008.

C. Zhao, W. Shi, and Y. Deng. A new Hausdorff distance for image matching. Pattern
Recognition Letters, 26(5):581–586, 2005.

X. Zhu and A. B. Goldberg. Introduction to semi-supervised learning. Morgan and
Claypool Publishers, 2009.

Publications by the Author

Books

[B1] 小林茂夫,杉山麿人.: 生命科学研究に成功するための統計法ノート,
講談社, 2009.

Journal Papers

[J1] Sugiyama, M., Yamamoto, A.: Semi-Supervised Learning on Closed Set
Lattices, Intelligent Data Analysis, IOS Press, 17(3), 2013, to appear.

[J2] Sugiyama, M., Imajo, K., Otaki, K., Yamamoto, A.: Semi-Supervised Ligand
Finding Using Formal Concept Analysis, IPSJ Transactions on Mathemati-
cal Modeling and Its Applications (TOM), The Information Processing So-
ciety of Japan (IPSJ), accepted.

Peer-reviewed Conference Proceedings

[P1] Sugiyama, M., Hirowatari, E., Tsuiki, H., Yamamoto, A.: Learning Fig-
ures with the Hausdorff Metric by Self-similar Sets (extended abstract),
In Proceedings of 6th Workshop on Learning with Logics and Logics for
Learning (LLLL2009), pp. 27–34, Kyoto, Japan, Jul. 6–7, 2009.

[P2] Sugiyama, M., Hirowatari, E., Tsuiki, H., Yamamoto, A.: Learning Figures
with the Hausdorff Metric by Fractals, Hutter, M. and Stephan, F. and
Vovk, V. and Zeugmann, T. (eds.), Algorithmic Learning Theory, LNCS
6331, pp. 315–329, Springer, 2010 (Proceedings of 21th International
Conference on Algorithmic Learning Theory (ALT 2010), Canberra, Aus-
tralia, Oct. 6–8, 2010)

[P3] Sugiyama, M., Yamamoto, A.: The Coding Divergence for Measuring the
Complexity of Separating Two Sets, In Proceedings of 2nd Asian Confer-
ence on Machine Learning (ACML2010), JMLR Workshop and Conference
Proceedings, vol. 13, pp. 127–143, Tokyo, Japan, Nov. 8–10, 2010

[P4] Sugiyama, M., Yamamoto, A.: Fast Clustering Based on the Gray-Code (ex-
tended abstract), In Proceedings of 7th Workshop on Learning with Log-
ics and Logics for Learning (LLLL2011), p. 42, Osaka, Japan, Mar. 29–30,
2011

158 PUBLICATIONS BY THE AUTHOR

[P5] Sugiyama, M., Yamamoto, A.: Semi-Supervised Learning for Mixed-Type
Data via Formal Concept Analysis, Andrews, S., Polovina, S., Hill, R.,
Akhgar, B. (eds.), Conceptual Structures for Discovering Knowledge, LNCS
6828, pp. 284–297, Springer, 2011 (Proceedings of the 19th Interna-
tional Conference on Conceptual Structures (ICCS2011), Derby, UK, Jul.
25–29, 2011)

[P6] Sugiyama, M., Yamamoto, A.: The Minimum Code Length for Clustering
Using the Gray Code, Gunopulos, D. and Hofmann, T. and Malerba, D. and
Vazirgiannis, M. (eds.), Machine Learning and Knowledge Discovery in
Databases, LNCS 6913, pp. 365–380, Springer, 2011 (Proceedings of the
European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD 2011), Athens, Greece,
Sep. 5–9, 2011)

[P7] Sugiyama, M., Yoshioka, T., Yamamoto, A.: High-throughput Data Stream
Classiϐication on Trees, InProceedings of SecondWorkshop onAlgorithms
for Large-Scale Information Processing in Knowledge Discovery (ALSIP
2011), Kagawa, Japan, Dec. 1–2, 2011

[P8] Sugiyama, M., Yamamoto, A.: A Fast and Flexible Clustering Algorithm
Using Binary Discretization, In Proceedings of the 2011 IEEE Interna-
tional Conference on Data Mining (ICDM 2011), pp. 1212–1217, Vancou-
ver, Canada, Dec. 11–14, 2011

Conference Proceedings

[C1] Sugiyama, M., Imajo, K., Otaki, K., Yamamoto, A.: Discovering Ligands
for TRP Ion Channels Using Formal Concept Analysis, In Proceedings of
the 21st International Conference on Inductive Logic Programming (ILP
2011), Windsor Great Park, UK, Jul.31–Aug.3, 2011.

Index

(𝜉, 𝜁)-computable, 37
(𝜉, 𝜁)-realization, 37
𝐿௣ metric, 138
FĎČCĔēĘ-Iēċ-learning, 24
FĎČCĔēĘ-Tĝę-learning, 24
FĎČEċEĝ-Iēċ-learning, 29
FĎČEċEĝ-Tĝę-learning, 29
FĎČEĝ-Iēċ-learning, 21
FĎČEĝ-Tĝę-learning, 21
FĎČRĊċEĝ-Iēċ-learning, 27
FĎČRĊċEĝ-Tĝę-learning, 27
FĎČRĊđEĝ-Iēċ-learning, 25
FĎČRĊđEĝ-Tĝę-learning, 25
Σ0

2-admissible representation, 39
𝛿-cover, 139
𝛿-neighborhood, 16
𝜔-automaton, 13
𝜉-computable, 37
𝑑-dimensional base-𝛽 embedding, 49
𝑙-neighborhood at level 𝑘, 80
𝑙-preference, 108
l-consistent, 104
m-consistency, 124
m-consistent, 124
m-preference, 126
m-preference at discretization levelk, 124
s-dimensional Hausdorff measure, 31

admissible representation, 37
afϐinity, 121
anti-monotonicity, 125

ball, 138
base-𝛽 embedding, 48
binary classiϐication, 9
binary discretization, 76
binary embedding, 49
binary encoding, 2
binary representation, 2, 10, 13
binary-coding divergence, 45, 50
boundary, 138
boundary point, 138

bounded, 139
box-counting dimension, 32
bucket sort, 83

Cantor space, 47
Cantor topology, 47
Cauchy sequence, 139
characteristic function, 9
Chebyshev metric, 138
classiϐication, 45
classiϐication rule, 103, 124
classiϐier, 9, 17
closed, 17, 102
closed interval, 137
closed set, 138
closed set lattice, 96, 103, 120
closure, 138
coding divergence, 44, 49, 50
compact set, 139
complete, 139
completeness, 109
compression, 62
computability, 36
computable, 17
concept, 102
concept lattice, 102, 120
conceptual scaling, 97
consistent, 20, 49
consistent learning, 50
context, 99
continuum, 2
contraction, 14
contractivity factor, 32
correctness, 109
correspondence, 136
countable, 139
cover, 139

data stream, 57
datum, 1
density-connected, 82
density-reachable, 82

160 INDEX

diameter, 139
directed coding divergence, 50
directly density-reachable, 82
directly reachable at level 𝑘, 80
discretization, 2, 8, 79, 90
discretization level, 101
distance parameter, 80
domain, 136

effective, 52
effective computing, 3
effectivity, 28
embedding, 47, 62
Eps-neighborhood, 81
equivalent, 36
error, 1
Euclidean metric, 137
Euclidean space, 137
example, 19
extent, 102
exterior, 138

false negative, 20
false positive, 20
FCA, 96, 120
feature vector, 9, 119
ϐigure, 10
ϐinite learning, 39
ϐinite tell-tale set, 23
Formal Concept Analysis, 96, 120
fractals, 11
function, 137

Galois connection, 102
generalization error, 16, 28
generator, 15
Gold-style learning model, 9
graph, 136
Gray code, 63
Gray code embedding, 69

Hausdorff dimension, 31
Hausdorff metric, 11, 16
Heine–Borel theorem, 139
hypothesis, 15
hypothesis space, 15

identiϐication in the limit, 9
IFS (Iterated Function System), 11
image, 136
indexed family of recursive concepts, 19

informant, 20
inner point, 138
intent, 102
inverse, 136

JSM-method, 97

Kolmogorov complexity, 62

label, 104
language, 14
lazy learner, 51
learner, 20
learning in the limit, 21
level-𝑘 partition, 66, 80
level-k example, 29
ligand, 119

Manhattan metric, 138
mapping, 137
mass distribution principle, 33
Maximum metric, 138
MCL, 62
MDL, 62
metric, 137
metric space, 137
micrometer, 1
minimum code length, 62
minimum description length, 62
minimum open set, 45
Minkowski metric, 138
mixed-type data, 96, 120
model, 49
monotonicity, 19, 53
multi-label classiϐication, 119

naïve Cauchy representation, 39
negative control, 44
negative example, 11, 19
neighborhood, 138
noise, 81
noise parameter, 68, 81
normal enumeration, 22

one shot learning, 39
open interval, 137
open kernel, 138
open set, 45, 49, 138
open set condition, 32
outer point, 138

INDEX 161

PAC learning model, 8
partial function, 136
positive control, 44
positive example, 10, 19
preference, 97, 119, 123
preference learning, 119
preϐix, 3
preϐix closed set, 11
presentation, 19
Probably Approximately Correct learn-

ing model, 8

qualify, 99

radix sort, 86
range, 136
reachable at level 𝑘, 80
real number, 1
receptor, 119
representation, 10, 36, 47

self-similar set, 11, 14
semi-supervised learning, 96, 119
shape-based clustering, 76
Sierpiński triangle, 15
similarity dimension, 32
source, 136
spatial clustering, 76
statistical hypothesis test, 44
stream, 3

target, 136
total function, 137
trie, 57
true negative, 20
true positive, 20
TTE, 3
tuple, 119
tupling function, 49
Turing machine, 3
type I error, 20
type II error, 20
Type-2 machine, 3, 36, 52
Type-2 Theory of Effectivity, 3

Valiant-style learning model, 8
VC dimension, 9, 32
Vietoris topology, 17, 37

	Title
	Abstract
	Acknowledgments
	1 Introduction
	1.1 Main Contributions

	I Theory
	2 Learning Figures as Computable Classification
	2.1 Related Work
	2.2 Formalization of Learning
	2.3 Exact Learning of Figures
	2.3.1 Explanatory Learning
	2.3.2 Consistent Learning
	2.3.3 Reliable and Refutable Learning

	2.4 Effective Learning of Figures
	2.5 Evaluation of Learning Using Dimensions
	2.5.1 Preliminaries for Dimensions
	2.5.2 Measuring the Complexity of Learning with Dimensions
	2.5.3 Learning the Box-Counting Dimension Effectively

	2.6 Computational Interpretation of Learning
	2.6.1 Preliminaries for Type-2 Theory of Effectivity
	2.6.2 Computability and Learnability of Figures

	2.7 Summary

	II From Theory to Practice
	3 Coding Divergence
	3.1 Related Work
	3.2 Mathematical Background
	3.2.1 The Cantor Space
	3.2.2 Embedding the Euclidean Space into the Cantor Space

	3.3 Coding Divergence
	3.3.1 Definition and Properties
	3.3.2 Classification Using Coding Divergence
	3.3.3 Learning of Coding Divergence

	3.4 Experiments
	3.4.1 Methods
	3.4.2 Results and Discussions

	3.5 Summary
	3.6 Outlook: Data Stream Classification on Trees
	3.6.1 CODE approach
	3.6.2 Experiments

	4 Minimum Code Length and Gray Code for Clustering
	4.1 Minimum Code Length
	4.2 Minimizing MCL and Clustering
	4.2.1 Problem Formulation
	4.2.2 COOL Algorithm

	4.3 G-COOL: COOL with Gray Code
	4.3.1 Gray Code Embedding
	4.3.2 Theoretical Analysis of G-COOL

	4.4 Experiments
	4.4.1 Methods
	4.4.2 Results and Discussion

	4.5 Summary

	5 Clustering Using Binary Discretization
	5.1 Clustering Strategy
	5.1.1 Formulation of Databases and Clustering
	5.1.2 Naïve BOOL
	5.1.3 Relationship between BOOL and DBSCAN

	5.2 Speeding Up of Clustering through Sorting
	5.3 Experiments
	5.3.1 Methods
	5.3.2 Results and Discussion

	5.4 Related Work
	5.5 Summary

	III With Formal Concept Analysis
	6 Semi-supervised Classification and Ranking
	6.1 Related Work
	6.2 The SELF Algorithm
	6.2.1 Data Preprocessing
	6.2.2 Clustering and Making Lattices by FCA
	6.2.3 Learning Classification Rules
	6.2.4 Classification

	6.3 Experiments
	6.3.1 Methods
	6.3.2 Results
	6.3.3 Discussion

	6.4 Summary

	7 Ligand Finding by Multi-label Classification
	7.1 The LIFT Algorithm
	7.1.1 Multi-label Classification and Ranking

	7.2 Experiments
	7.2.1 Methods
	7.2.2 Results and Discussion

	7.3 Summary

	8 Conclusion
	Appendix
	A Mathematical Background
	A.1 Sets and Functions
	A.2 Topology and Metric Space

	Symbols
	Bibliography
	Publications by the Author
	Index

