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Goal

• Given multiple networks
• Find features (vertices), which are associated with
the target response and tend to be connected each other
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Main Result

• New formulation of multi-task feature selection

argmax

tasks

)
association

)

penalty

,

connectivity

|
sparsity

,

) |
• It is efficiently solved by max-flow algorithms
• Its performance is superior to Lasso-based methods
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Motivation: Data Mining on Networks

• Networks (graphs) are everywhere
– Biological pathways (KEGG), chemical compounds

(PubChem), social networks,…
• Which part of the network is responsible for performing a
particular function?
→ Feature selection on networks
– Features vertices (nodes)
– Network topology a priori knowledge about relationships

between features

• Multi-task feature selection should be considered
for more effectiveness
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Existing Approach: Lasso

• Lasso-based regression with:
– ℓ -regularizer
– Structured (network) regularizers

• Drawbacks
– Prediction loss is optimized, different from finding features

that are relevant for (associated with) a property of interest

• Drawbacks in multi-task setting
– Exactly the same features are always selected

among different tasks
– Only one network structure can be employed
∘ No method can use multiple networks simultaneously
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SConES (Selecting Connected Explanatory SNPs)

• Single task feature selection on a network
[Azencott et al. ISMB2013]

• Given a weighted graph 𝐺 = (𝑉, 𝐸)
– Each ∈ has a relevance score ( )
– If you have a design matrix 𝐗 ∈ ℝ ×| | and a response vector
𝐲 ∈ ℝ , ( ) is the association of 𝐲 and each feature of 𝐗

• Objective: Find a subset 𝑆 ⊂ 𝑉 which maximizes

𝑓(𝑆) ∶=
∈
𝑞(𝑣) (additive score), while

– 𝑆 is small
– Vertices in 𝑆 are connected each other
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Formulation of SConES

• argmax ⊂ 𝑓(𝑆) − 𝑔(𝑆)

𝑓(𝑆) ∶=
∈
𝑞(𝑣), 𝑔(𝑆) ∶= 𝜆∑ ∈ 𝑤(𝑒)

connectivity

+ 𝜂|𝑆|
sparsity

– { { , } ∈ ∣ ∈ ⧵ , ∈ } (boundary)
– ∶ → ℝ is a weighting function

BS
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Solution of SConES via Maximum Flow
• The 𝑠/𝑡-network𝑀(𝐺) = (𝑉 ∪ {𝑠, 𝑡}, 𝐸 ∪ 𝑆 ∪ 𝑇)with

{ , } ∣ ∈ , ( ) , { , } ∣ ∈ , ( )
and set the capacity 𝑐 ∶ 𝐸 → ℝ to

𝑐({𝑣, 𝑢}) = | 𝑞(𝑢) − 𝜂 | if 𝑢 ∈ {𝑠, 𝑡} and 𝑣 ∈ 𝑉,
𝜆𝑤({𝑣, 𝑢}) otherwise

• The minimum 𝑠/𝑡 cut of𝑀(𝐺) = the solution of SConES
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Key Contribution: Multi-SConES

• Given 𝐾 networks 𝒢 = {𝐺 , 𝐺 , … , 𝐺 }
– They share vertices and have different edges

• Multi-task version of SConES:

argmax

tasks

)
association

)

penalty

,

connectivity

|
sparsity

,

) |
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Solution of Multi-SConES

• Multi-SConES is solved by the max-flow algorithm
on the unified single network
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Solution of Multi-SConES

• Multi-SConES is solved by the max-flow algorithm
on the unified single network

s t

Minimum
cut

Multiple
networks

Uni�ed single networks s/t-networks
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FromMulti-Task to Single-Task

• The unified network 𝑈(𝒢) = (�̃�, �̃�) from 𝐾 networks:

�̃� ∶= ⋃ 𝑉 , �̃� ∶= ⋃ 𝐸 ∪ ⋃ 𝐴 , where

𝐴 ∶= {𝑣 , 𝑣 } 𝑖, 𝑗 ∈ {1, … , 𝐾}, 𝑖 ≠ 𝑗 .
– Theweight �̃� of edges is givenas �̃�(𝑒) = 𝑤 (𝑒) if 𝑒 ∈ 𝐸

and �̃�(𝑒) = 𝜇/𝜆 otherwise
– 𝑈(𝒢) has |�̃�| = 𝐾𝑛 vertices,
|�̃�| = ∑ |𝐸 | + 𝑛𝐾(𝐾 − 1)/2 edges

• Our multi-task problem is exactly equivalent to
the single-task over 𝑈(𝒢)
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Empirical Comparison

• Correlation ranking (baseline)
• Single-task:
– Lasso, Elastic net
– Group Lasso (with groups formed by edges)
– Grace, aGrace (Lasso-based state-of-the-art)
argmin ‖𝐲 − 𝐗𝛽‖ + 𝜆 ‖𝛽 ‖

sparsity

+ 𝜆 𝛽 𝐋𝛽
connectivity

∘ Accelerated by replacing SVD to the incidence matrix

• Multi-task:
– Multi-task Lasso, Multi-task Grace

• Performance is measured by
MCC (Matthews correlation coefficient) and MSE
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Synthetic Data

• Gene regulatory networks are simulated
– 2,200 features (vertices)
∘ 200 transcription factors (TFs) and 2,000 genes
∘ Each TF is connected to 10 regulatory target genes

– First 44 features (4 TFs and40genes) are causal to the response
∘ They are correlated with the response

– 4 models
∘ Models 1, 3 (2, 4) are positively (negatively) correlated
∘ Correlation in models 3, 4 is weaker than 1, 2

– The same data was used in [Li and Li; 2008]
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Running Time

Number of tasks

Lasso
Grace
SConES

Ru
nn

in
g 

tim
e 

(s
)

1 2 5 10 20 50 100
0.01

0.10

1.00

10.00

100.00

15/23



Parameter Sensitivity (1/2)
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Parameter Sensitivity (2/2)
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Performance for Synthetic Data (model 1)

CR: ranking of correlations (baseline), LA: Lasso, EN: the elastic net, GL: group Lasso,
GR: Grace, AG: aGrace, and SC: SConES
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Performance for Two Tasks (model 1)

CR: ranking of correlations (baseline), LA: Lasso, GR: Grace, SC: SConES
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Multi-Locus Association Mapping

• Goal: Find SNPs (features) that are associated with
phenotype, using a network over SNPs

• Arabidopsis thaliana GWAS data
– 216,130 SNPs (features)
– 6 flowering time phenotypes (1 phetnotype 1 task)
– Protein-protein interaction network from TAIR
∘ SNPs are connected if they belong to the connected genes

• 282 candidate genes are gold standard of causal features

A T T A G G C C...

Region of candidate causal gene

Hit region (20kb)

SNPs
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Results of Association Mapping (MCC)

Phenotype MCC
Lasso Grace SConES

2W 0.001 −0.001 𝟎.𝟎𝟏𝟒
2W + 4W −0.001 −0.003 𝟎.𝟎𝟏𝟔
2W + FT GH 0.001 0.000 𝟎.𝟎𝟐𝟒
2W + 4W + FT GH 0.005 0.002 𝟎.𝟎𝟐𝟕
LDV 0.001 0.000 𝟎.𝟎𝟏𝟔
LDV + 0W 0.005 0.007 𝟎.𝟎𝟐𝟎
LDV + FT10 0.001 0.001 𝟎.𝟎𝟐𝟏
LDV + 0W + FT10 0.003 0.002 𝟎.𝟎𝟐𝟑
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Results of Association Mapping (SNPs)

Phenotype Hit ratio of SNPs (prec.)
Lasso Grace SConES

2W 7/126 4/98 𝟒𝟐/𝟑𝟑𝟖
2W + 4W 7/175 6/198 𝟖𝟏/𝟖𝟎𝟐
2W + FT GH 9/173 7/146 𝟏𝟎𝟔/𝟖𝟏𝟖
2W + 4W + FT GH 15/183 16/265 𝟏𝟎𝟏/𝟔𝟕𝟗
LDV 6/116 7/144 𝟕𝟑/𝟔𝟔𝟕
LDV + 0W 16/196 19/206 𝟖𝟔/𝟕𝟎𝟐
LDV + FT10 12/214 10/191 𝟗𝟐/𝟕𝟔𝟐
LDV + 0W + FT10 18/283 19/323 𝟖𝟏/𝟒𝟖𝟐

22/23



Conclusion

• A new formulation, Multi-SConES, for multi-task
feature selection with multiple network regularizers
– Direct optimization of feature relevance scores
– Exact solution via max-flow algorithms

• It can select different features for different tasks
• It can use different networks for different tasks

• Future work
– Incorporating more complex task relationships
∘ Currently, a single parameter 𝜇
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Difficulty of Optimization

• Given a positive integer 𝑘
• The maximum-weight connected graph (MCG) problem:
argmax

⊂
𝑓(𝑆) s.t. 𝐺| is connected and |𝑆| = 𝑘

is known to be strongly NP-complete

A-2/A-11



Regularization Path

• 𝜂 has anti-monotonicity with respect to the number of se-
lected features
– 𝑆(𝜂) ⊂ 𝑆(𝜂 ) if and only if 𝜂 > 𝜂

• The entire regularization path along with the changes in
𝜂 can be obtained
– Time complexity does not increase by using parametric

maximum flow algorithm [Gallo et al. 1989]

A-3/A-11



Spectral Analysis

• 𝐟 ∈ {0, 1}| |: the indicator vector of a subset 𝑆 ⊂ 𝑉
• 𝐜 ∈ ℝ| |: the vector composed of values 𝑞(𝑣)
• Single-task SConES:
argmax
𝐟∈{ , }| |

𝐜 𝐟 − 𝜆𝐟 𝐋𝐟 − 𝜂‖𝐟‖

• Multi-task SConES:
argmax
𝐟 ,…,𝐟

∑ 𝐜 𝐟 −𝜆𝐟 𝐋 𝐟 −𝜂‖𝐟 ‖ −∑ 𝜇‖𝐟 −𝐟 ‖ ,

• On the unified network, multi-task SConES is written as:
argmax
̃𝐟∈{ , } | |

�̃� ̃𝐟 − 𝜆 ̃𝐟 �̃� ̃𝐟 − 𝜂‖ ̃𝐟‖ .
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Performance for Synthetic Data (model 2)

CR: ranking of correlations (baseline), LA: Lasso, EN: the elastic net, GL: group Lasso,
GR: Grace, AG: aGrace, and SC: SConES
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Performance for Synthetic Data (model 3)

CR: ranking of correlations (baseline), LA: Lasso, EN: the elastic net, GL: group Lasso,
GR: Grace, AG: aGrace, and SC: SConES
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Performance for Synthetic Data (model 4)

CR: ranking of correlations (baseline), LA: Lasso, EN: the elastic net, GL: group Lasso,
GR: Grace, AG: aGrace, and SC: SConES
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Performance for Two Tasks (model 2)

CR: ranking of correlations (baseline), LA: Lasso, GR: Grace, SC: SConES
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Performance for Two Tasks (model 3)

CR: ranking of correlations (baseline), LA: Lasso, GR: Grace, SC: SConES
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Performance for Two Tasks (model 4)

CR: ranking of correlations (baseline), LA: Lasso, GR: Grace, SC: SConES
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Results of Association Mapping (genes)

Phenotype Hit ratio of genes (prec.)
Lasso Grace SConES

2W 2/112 1/91 𝟕/𝟏𝟐𝟒
2W + 4W 2/163 2/191 𝟏𝟏/𝟐𝟒𝟎
2W + FT GH 9/162 7/135 𝟏𝟑/𝟐𝟓𝟎
2W + 4W + FT GH 6/174 3/256 𝟏𝟑/𝟐𝟎𝟖
LDV 2/107 2/131 𝟗/𝟐𝟎𝟐
LDV + 0W 2/183 2/187 𝟏𝟎/𝟐𝟎𝟗
LDV + FT10 1/199 1/181 𝟏𝟎/𝟐𝟐𝟏
LDV + 0W + FT10 2/265 1/307 𝟏𝟎/𝟏𝟓𝟑
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