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Goal

- Given multiple networks

- Find features (vertices), which are associated with
the target response and tend to be connected each other

Rl

2/23



Main Result

- New formulation of multi-task feature selection

argmax Z( fi(S) —gi(S)) - zh(SUS ),
T_i’icv i=1 aSSOC|at|on _ i<j
tasks

penahy

fiS) =) ai®), gi(S) =2 ) wie)+niSi.

VES; _ EEB; ~ sparsity

connéctivity
h(S:,S;) ==p|S; a8 =pl(SUSHINENS)]
- It is efficiently solved by

- Its performance is superior to Lasso-based methods
3/23



Motivation: Data Mining on Networks

- Networks (graphs) are everywhere

— Biological pathways (KEGG), chemical compounds
(PubChem), social networks, ...

- Which part of the network is responsible for performing a

particular function?
%

— Features = vertices (nodes)

— Network topology = a priori knowledge about relationships
between features

o feature selection should be considered
for more effectiveness
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Existing Approach: Lasso

- Lasso-based regression with:
— £,-regularizer
- Drawbacks
- is optimized, different from finding features
that are (associated with) a property of interest
- Drawbacks in multi-task setting

— Exactly the same features are always selected
among different tasks

— Only one network structure can be employed
o No method can use multiple networks simultaneously
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SConES (Selecting Connected Explanatory SNPs)

- Single task feature selection on a network
[Azencott et al. ISMB2013]

- Given a weighted graph ¢ = (V,E)
— Each v € V has a relevance score g (v)

— If you have a design matrix X € R¥*IVI and a response vector
y € RY, g(v) is the association of y and each feature of X

- Objective: Find a subset §  V which maximizes

£(S) = z g(v) (additive score), while
VES
- Sis
— Verticesin § are
6/23



Formulation of SConES

F(S) =) a@), g(S) = AT epw(e) + lS|
VES ¥connevctivity4 sMy

- B={{v,u}€E|lveV\S, uesS}(boundary)

— w: E - R" is a weighting function

/~B
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Solution of SConES via Maximum Flow

. The M(G) = (V U {s,t}, E US UT) with
S={{s,v}1veVv, qw) >n}, T ={{t,v} I veV, q(v) < n}
and set the capacity c : E' - R* to

- if , dvev,
et = [0 otensise €

- The of M (G) = the solution of SConES
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Key Contribution: Multi-SConES

- Given K networks G = {G4, G,, ..., Gk}
— They share vertices and have different edges

- Multi-task version of SConES:

argmaxZ( fi(S) —9i(50) - Zh(&ﬁ)

SKCV =1 assoaatmn - 1<J
K tasks
penahy
fiS) = ) i), gi(S) =2 ) wi(e)+ IS,
——
VES; _ €EBj ~ sparsity

conne'ctivity
h(S,S;) :==pulS;AS;|=pul(SUSH\N(ES NS
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Solution of Multi-SConES

- Multi-SConES is solved by the
on the

=
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Solution of Multi-SConES

- Multi-SConES is solved by the
on the

Multiple Unified single networks s/t-networks
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From Multi-Task to Single-Task

- The unified network U(G) = (V, E) from K networks:
Vi=UV, E:=UjiEl UUL_ Ay, where

A, = {{vl?",v]’-"} ‘ i,j €{1,..,K},i ;&j}_

- Theweightw of edgesis givenasw(e) = w;(e)ife € E;
and w(e) = u/A otherwise

- U(G) has |V| = Kn vertices,
E| = edges

- Our multi-task problem is exactly equivalent to
the single-task over U(G)
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Empirical Comparison

- Correlation ranking (baseline)
- Single-task:
- Lasso, Elastic net

— Group Lasso (with groups formed by edges)
— (Lasso-based state-of-the-art)

I

al‘génin ly —XBIZ + A411811| + 228TLB

Sparsity connectivity

o Accelerated by replacing SVD to the incidence matrix

- Multi-task:
— Multi-task Lasso, Multi-task Grace

- Performance is measured by

(Matthews correlation coefficient) and
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Synthetic Data

- Gene regulatory networks are simulated

— 2,200 features (vertices)
o 200 transcription factors (TFs) and 2,000 genes
o Each TF is connected to 10 regulatory target genes

— First 44 features (4 TFsand 40 genes) are causal to the response
o They are correlated with the response

— 4 models
o Models 1, 3 (2, 4) are positively (negatively) correlated
o Correlation in models 3, 4 is weaker than 1, 2

— The same data was used in [Li and Li; 2008]
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Running Time
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Parameter Sensitivity (1/2)
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Parameter Sensitivity (2/2)
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Performance for Synthetic Data (model 1)
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Performance for Two Tasks (model 1)
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Multi-Locus Association Mapping

- Goal: Find SNPs (features) that are associated with
phenotype, using a network over SNPs
- Arabidopsis thaliana GWAS data
— 216,130 SNPs (features)
— 6 flowering time phenotypes (1 phetnotype = 1 task)
— Protein-protein interaction network from TAIR
o SNPs are connected if they belong to the connected genes

- 282 candidate genes are gold standard of causal features

Region of candidate causal gene

SNPs |ATTAGGCC... \\

Hit region (20kb)
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Results of Association Mapping (MCC)

Phenotype MCC

Lasso Grace SConES
2W 0.001 -0.001 0.014
2W + 4W —0.001 —-0.003 0.016
2W + FT GH 0.001 0.000 0.024
2W + 4W + FT GH 0.005 0.002 0.027
LDV 0.001 0.000 0.016
LDV + OW 0.005 0.007 0.020
LDV + FT10 0.001 0.001 0.021
LDV + OW + FT10 0.003 0.002 0.023
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Results of Association Mapping (SNPs)

Phenotype Hit ratio of SNPs (prec.)
Lasso Grace SConES
2W 7/126 4/98 42/338
2W + 4W 7/175 6/198  81/802
2W + FT GH 9/173 7/146 106/818
2W+4W +FTGH 15/183 16/265 101/679
LDV 6/116 7/144  73/667
LDV + OW 16/196 19/206 86/702
LDV + FT10 12/214 10/191  92/762
LDV+O0W +FT10 18/283 19/323  81/482
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Conclusion

- A new formulation, Multi-SConES, for
with
— Direct optimization of feature relevance scores
— Exact solution via max-flow algorithms

. |t can select for different tasks
. |t can use for different tasks

- Future work
- Incorporating more complex task relationships

o Currently, a single parameter u
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Appendix
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Difficulty of Optimization

- Given a positive integer k

- The maximum-weight connected graph (MCG) problem:

argmax [ (S) s.t. G|s is connected and |S| = k
Scv

is known to be strongly NP-complete
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Regularization Path

- 1 has with respect to the number of se-
lected features
- S(m) cS(n")ifandonlyifn >n’

- The entire along with the changes in
1 can be obtained

— Time complexity does not increase by using
[Gallo et al. 1989]
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Spectral Analysis

- f € {0,1}V]: the indicator vector of a subset S c V

. ¢ € RVI: the vector composed of values g (v)
- Single-task SConES:

argmax c'f — AfTLf — n||f]|,
fe{0,1}!V

« Multi-task SConES:
argmax Y;_, (] f; = AT Lf;—nlIf;llo ) =X, ullf:—F;113

£, fx
- On the unified network, multi-task SConES is written as:

argmax €1 f — AMfTLf — n||f|[,.
fe{o,1}XIV
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Performance for Synthetic Data (model 2)
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Performance for Synthetic Data (model 3)
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Performance for Synthetic Data (model 4)
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Performance for Two Tasks (model 2)
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Performance for Two Tasks (model 3)
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Performance for Two Tasks (model 4)
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Results of Association Mapping (genes)

Phenotype Hit ratio of genes (prec.)
Lasso Grace SConES
2W 2/112 1/91 7/124
2W + 4W 2/163 2/191 11/240
2W + FT GH 9/162 7/135 13/250
2W+4W+FTGH 6/174 3/256 13/208
LDV 2/107 2/131 9/202
LDV + OW 2/183 2/187 10/209
LDV + FT10 1/199 1/181 10/221
LDV+O0W+FT10 2/265 1/307 10/153

A-11/A-11



	Title
	Goal
	Main Result
	Motivation: Data Mining on Networks
	Existing Approach: Lasso
	SConES (Selecting Connected Explanatory SNPs)
	Formulation of SConES
	Solution of SConES via Maximum Flow
	Key Contribution: Multi-SConES
	Solution of Multi-SConES
	Solution of Multi-SConES
	From Multi-Task to Single-Task
	Empirical Comparison
	Synthetic Data
	Running Time
	Parameter Sensitivity (1/2)
	Parameter Sensitivity (2/2)
	Performance for Synthetic Data (model 1)
	Performance for Two Tasks (model 1)
	Multi-Locus Association Mapping
	Results of Association Mapping (MCC)
	Results of Association Mapping (SNPs)
	Conclusion

	Appendix
	Difficulty of Optimization
	Regularization Path
	Spectral Analysis
	Performance for Synthetic Data (model 2)
	Performance for Synthetic Data (model 3)
	Performance for Synthetic Data (model 4)
	Performance for Two Tasks (model 2)
	Performance for Two Tasks (model 3)
	Performance for Two Tasks (model 4)
	Results of Association Mapping (genes)


