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Summary

• Problem: Given a collection of graphs with class labels,
find all subgraphs whose occurrences are
significantly enriched in a particular class

– A central step for deep understanding

• Difficulty: The number of subgraphs is massive
(often more than a billion!)

– Computationally expensive
– Need of multiple testing correction
to control false positive rate

• Solution: Only examining testable subgraphs
– The number of candidate subgraphs dramatically reduced
– Rigorous multiple testing correction
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Multiple Testing
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Multiple Testing Correction

• If we testm subgraphs, αm subgraphs are false positives
– α: Significance level (predetermined by the user)

• FWER: Probability of having more than one false positives
among all subgraphs
– FWER = Pr(FP > 0)

◦ FP: Number of false positives

• To achieve FWER = α, change the significance level
for each test from α to δ
– δ: corrected significance level
– δ ≤ α

◦ Bonferroni correction is popular: δ∗Bon = α/m
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Counting the Frequency of Subgraphs

Frequency
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Counting the Frequency of Subgraphs
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The Minimum P Value

• The minimum achievable P value
is determined from the frequency f (H) of a subgraph H:
Pmin = ( n

f (H))/ (n + n′

f (H) )
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Testability

• The minimum achievable P value
is determined from the frequency f (H) of a subgraph H:
Pmin = ( n

f (H))/ (n + n′

f (H) )
• Tarone (1990) pointed out (and Terada et al. (2013) revisited):

For a hypothesis H, if its minimum P value is larger than
the significance threshold, this is untestable and
we can ignore it

– Untestable hypotheses (subgraphs) do not increase the FWER
– The Bonferroni factor reduces to the number of testable
hypotheses
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Finding the Optimal Correction Factor

• m(k): # of subgraphs whose minimum P values < α/k
– k: the correction factor, α/k: the corrected significance level

• For each k, FWER is controlled as (Tarone 1990):

FWER ≤ m(k)α
k
=
m(k)
k

α

• Our task is to optimize k:
k∗ = argmax

k
m(k) s.t.m(k) ≤ k

– Enumerate testable subgraphs whose min. P values < α/k∗
δ∗Bon = α/(# of all subgraphs)
δ∗Tar = α/(# of testable subgraphs)
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Subgraphs Are Testable Iff Frequent

• Our task:
k∗ = argmax

k
m(k) s.t.m(k) ≤ k

– m(k) = # of subgraphs whose minimum P values < α/k
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Subgraphs Are Testable Iff Frequent

• Our task:
k∗ = argmax

k
m(k) s.t.m(k) ≤ k
⇓

σ∗ = argmax
σ

m′(σ) s.t.m′(σ) ≤ α/ψ(σ)
– m(k) = # of subgraphs whose minimum P values < α/k
– m′(σ): # of subgraphs whose frequency ≥ σ

◦ # of “frequent subgraphs”

– ψ(σ): the minimum P value at σ, ψ(σ) = (n
σ
) / (n+n′

σ
)
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Subgraphs Are Testable Iff Frequent

• Our task:
k∗ = argmax

k
m(k) s.t.m(k) ≤ k
⇓

σ∗ = argmax
σ

m′(σ) s.t.m′(σ) ≤ α/ψ(σ)
– m(k) = # of subgraphs whose minimum P values < α/k
– m′(σ): # of subgraphs whose frequency ≥ σ

◦ # of “frequent subgraphs”

– ψ(σ): the minimum P value at σ, ψ(σ) = (n
σ
) / (n+n′

σ
)

Testable subgraphs = Frequent subgraphs
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How to Use SubgraphMining

# of subgraphs
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Decremental Search (LAMP)

# of subgraphs

Frequency

Decremental
search

Terminate if # of subgraphs is larger than α / (Pmin at σ)
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Incremental Search

# of subgraphs

Frequency

Incremental
search

Terminate if # of subgraphs detected so far exceeds α / (Pmin at σ)
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Datasets

Dataset Size #positive avg.∣V ∣ avg.∣E∣ max∣V ∣ max∣E∣
PTC (MR) 584 181 31.96 32.71 181 181
MUTAG 188 125 17.93 39.59 28 66
D&D 1178 691 284.32 715.66 5748 14267
NCI1 4208 2104 60.12 62.72 462 468
NCI167 80581 9615 39.70 41.05 482 478
NCI220 900 290 46.87 48.52 239 255
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Number of Significant Subgraphs
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Running Time (second)
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Running Time Summary

• RMSD (root mean square deviation) of running time (seconds)
to the best (fastest) running time on all datasets

Brute-force Decremental (LAMP) Incremental

6.994 × 104 2.410 × 104 1.230 × 102

• Incremental search is the fastest
– More than two orders of magnitude faster than brute-force
– Much faster than decremental (LAMP) as the final minimum
support is usually small (∼20)
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Final Minimum Frequencies

Dataset Maximum size of subgraph nodes n
5 7 9 11 13 15 Limitless

PTC(MR) 9 10 11 11 11 11 11 181
MUTAG 8 10 11 12 14 — — 125
D&D 20 22 22 22 22 22 22 691
NCI1 17 20 22 25 27 29 — 2104
NCI167 7 8 9 10 11 — — 9615
NCI220 10 11 13 14 15 16 18 290
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Conclusion

• We achieved to enumerate all significant subgraphs
– The first work that considers multiple testing correction in
graph mining

• Efficient and more powerful (less false negatives)
using testability and frequent subgraph mining

• Pattern mining, a classical yet central topic in data mining,
can be enriched by introducing statistical assessment
– Can be applied in scientific fields such as biology
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Papers about Testability
• Tarone, R.E.:
Amodified Bonferroni method for discrete data
Biometrics (1990)

• Terada, A., Okada-Hatakeyama, M., Tsuda, K., Sese, J.:
Statistical significance of combinatorial regulations,
Proc. Natl. Acad. Sci. USA (2013).

• Minato, S., Uno, T., Tsuda, K., Terada, A., Sese, J.:
Fast Statistical Assessment for Combinatorial Hypotheses
Based on Frequent Itemset Mining
ECML PKDD 2014

• Sugiyama, M., Llinares, F., Kasenburg, N., Borgwardt, K.:
Significant SubgraphMining with Multiple Testing Correction,
SIAM SDM 2015 (http://arxiv.org/abs/1407.0316)
– Code: http://git.io/N126
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Hypothesis Test for Each Subgraph

True Positive False Positive
(Type I Error)

False Negative
(Type II Error) True Negative

Declared 
signi�cant

Declared
non-signi�cant

Null hypothesis
is true

Alternative hypothesis
is true

Null hypothesis: 

Alternative hypothesis: 

The occurence of the subgraph is
independent from the activity
The occurence of the subgraph is
associated with the activity
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Testing the Independence of Subgraph

• Given two sets of graphs G and G ′

– ∣G∣ = n, ∣G ′∣ = n′ (n ≤ n′)

• The P value of each subgraph H ⊑ G with G ∈ G ∪G ′ is
determined by the Fisher’s exact test
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Fisher’s Exact Test

• The probability q(x) of obtaining x and x ′ is given by the
hypergeometric distribution:

q(x) = (nx)(n′x ′)/(n + n′

x + x ′)
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Testable Subgraphs

Minimum P value

Frequency is large
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Testable Subgraphs

Minimum P value

Frequency is large

Signi�cance level
α / 10

k = 10, 

Testable subgraphsUntestable subgraphs

m(10) = 1 (this k is the Bonferroni factor)
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Testable Subgraphs
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Testable Subgraphs
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Testable Subgraphs
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Testable Subgraphs

Minimum P value

Frequency is large
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α / 8

k = 8, 

Testable subgraphsUntestable subgraphs

m(8) = 6
The reduced Bonferroni factor

Compute the (exact) P values of these
testable subgraphs
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Effective Number of Tests

• Many subgraphs are expected to be highly correlated
due to subgraph-supergraph relationships

• Use the effective number of tests to exploit the
dependence between subgraphs and increase the power

• In the Šidák correction, the significance level

α′ = 1 − (1 − α)1/m
for m independent tests

• Only meff < m tests are effective for controlling the FWER

meff ∶=
log(1 − α)
log(1 − α′)
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Estimation of Effective Number

• We directly estimate the level α′

by random permutations of class labels
– Optimal estimation of meff in theory
– The drawback is the high computational cost O(mh)

◦ m: # of subgraphs, h: # of iterations

• Overcome by considering only testable subgraphs
– We apply the above permutation-based estimation to only
testable subgraphs

– The complexity is O(τ(m)h) (τ(m): # of testable subgraphs)
• Moskvina, V. and Schmidt, K. M. Onmultiple-testing correction in
genome-wide association studies. Genetic epidemiology,
32(6):567–573, 2008.
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Detected Significant Subgraphs

PTC (MR)
(carcinogenicity)

NCI 220
(anti-cancer activity)
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Frequent SubgraphMiners
• [AGM] Inokuchi, A. and Washio, T. and Motoda, H.:
An Apriori-Based Algorithm for Mining Frequent
Substructures from Graph Data, PKDD 2000

• [gSpan] Yan, X. and Han, J.:
gSpan: Graph-based substructure pattern mining,
ICDM 2002

• [GASTON] Nijssen, S. and Kok, J. N.:
A Quickstart in Frequent Structure Mining CanMake a
Difference, KDD 2004

• (comparison)Wörlein, M. and Meinl, T. and Fischer, I. and
Philippsen, M.
A Quantitative Comparison of the SubgraphMiners MoFa,
gSpan, FFSM, and Gaston, PKDD 2005
– We used GASTON as it is the fastest
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Related work: LAMP version 2

• Minato et al. proposed a faster version of LAMP
in itemset mining
– Minato, S., Uno, T., Tsuda, K., Terada, A. and Sese, J.:
Fast Statistical Assessment for Combinatorial Hypotheses
Based on Frequent Itemset Mining
ECML PKDD 2014

• The idea is almost the same with our incremental search
– Start from σ = 1, every time an item is added,
the condition ∣I(σ)∣ ≤ α/ψ(σ) is checked
◦ I(σ): the set of itemsets found so far with the frequency ≥ σ

– As soon as ∣I(σ)∣ > α/ψ(σ), the current σ is too large and we
decrement it
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